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Chargino Production at a future LC in the MSSM with

complex Parameters: NLO Corrections
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We calculate chargino production at a future linear collider, including full one-loop
contributions in the MSSM with complex parameters. To achieve this, we require a
comprehensive approach to renormalisation in the chargino and neutralino sector, for
the case where parameters can be complex. Using the field renormalisation as developed
in Refs. [1–3], we investigate the parameter renormalisation in the complex case. We
also study the numerical role of the choice of renormalisation scheme as in Refs. [2, 3].
Finally we present new results showing the effect of the phases on the resulting cross
section at NLO.

1 Introduction

In light of latest LHC data [4,5] and fits to it (see e.g. Ref [6]), it is thought that the charginos
and neutralinos could be among the lightest supersymmetric particles, and therefore within
reach of a linear collider. Their production should allow a leading order determination of
M1, M2, µ and tanβ, at the percent level (e.g. Ref. [7]), as well as access to phases arising at
next-to-leading order (NLO) via asymmetries (e.g. Ref. [8]). Due to the high sensitivity of
measurements in the clean LC environment, higher order corrections would be crucial. The
on-shell renormalisation of the chargino-neutralino sector was investigated for the minimal
supersymmetric standard model (MSSM) with real parameters in Refs. [1,9–13]. Working in
the on-shell scheme for the complex MSSM requires a consistently defined framework. When
carrying out the field renormalisation, absorptive parts of loop integrals must be included [1].
For the parameter renormalisation, the masses required on-shell must be carefully chosen [2,
11], and in addition the phases renormalisation must be considered [2,3]. In the following we
will introduce the complex MSSM and our approach to its renormalisation, as described in
Ref. [3]. We further investigate the numerical role played by the choice of renormalisation.
Finally we present results for the dependence of the NLO corrections to the cross-section
for chargino production on the complex phases of MSSM parameters.

2 Renormalization of the chargino and neutralino sector of the

MSSM

Charginos and neutralinos are the mass eigenstates of gauginos and higgsinos, and the mass
matrix for the charginos is given by

X =

(

M2

√
2MW sβ√

2MW cβ µ

)

, (1)

where sβ/cβ ≡ sinβ/ cosβ. The chargino masses are obtained by diagonalising the matrix
via the bi-unitary transformation Mχ̃+ = U∗XV †. The mass matrix for the neutralinos in
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the (B̃, W̃ , H̃1, H̃2) basis is given by

Y =









M1 0 −MZcβsW MZsβsW
0 M2 MZcβcW −MZsβcW

−MZcβsW MZcβcW 0 −µ
MZsβsW −MZsβcW −µ 0









. (2)

Since Y is complex symmetric, its diagonalisation requires only one unitary matrix N , via
Mχ̃0 = N∗Y N †, giving us the neutralino masses. Clearly the additional parameters that
enter this sector are M1, M2 and µ.

We renormalise the chargino and neutralino fields in the most general way, making
use of separate renormalisation constants (RCs) for the incoming and outgoing fields, i.e.

coefficients δZ
L/R
±,ij and Z̄

L/R
±,ij respectively for left and right-handed charginos, and δZ

L/R
0,ij

and Z̄
L/R
0,ij for left and right-handed neutralinos, as defined in Ref. [1–3]. Renormalising

the matrices X and Y in the case where M1 and µ may be complex quantities, the five
independent parameters δ|M1|, δ|M2|, δ|µ|, δφM1

and δφµ are renormalised via

|M1| → |M1|+ δ|M1|, |M2| → |M2|+ δ|M2|, ‖µ| → |µ|+ δ|µ|,
φM1

→ φM1
+ δφM1

, φµ → φµ + δφµ. (3)

For consistency and to ensure the gauge-boson masses are defined on-shell throughout, tanβ,
MW , MZ and sin θW are renormalised as defined in Ref. [3]. Our procedure closely follows
Refs. [1,2,10,14], and differs from the method used in Ref. [13], where the mixing matrices are
renormalised using the proposal of Ref. [15], which draws a parallel with the renormalisation
of the CKM matrix, discussed in more detail in Sec. 2.1.

2.1 Field renormalisation

In order to obtain expressions for the field RCs, we impose the standard on-shell conditions
as defined in Ref. [3]. Adopting the most general approach, we do not impose the hermiticity

relation δZ
L/R
±,ij 6= δZ̄

R/L
±,ji , and but instead use the additional conditions that the renormalised

propagators retain the same Lorentz structure as the tree level propagators. The expressions
we find for the RCs [3] obey the above hermiticity condition up to the absorptive parts of the
loops integrals. Dropping these absorptive parts is possible in the real case up to the one-loop
level, but when complex parameters are present products of these and the absorptive parts
means that the on-shell conditions would no longer be satisfied [1–3]. We later investigate the
size of the effect of ignoring these absorptive parts on predictions for physical observables.

2.2 Parameter renormalisation

For the parameters |M1|, |M2| and |µ|, on-shell conditions can easily be obtained by consid-
ering the case where φM1

and φµ vanish. Expressions for δ|M1|, δ|M2|, δ|µ| are derived by
choosing three out of the total of six physical masses to be on-shell [2, 3]. There are clearly
three possibilities, three neutralinos χ0

1, χ
0
2, χ

0
3 (NNN), two neutralinos and one chargino

χ0
1, χ

0
2, χ

±
2 (NNC) or one neutralino and two charginos χ0

1(2/3), χ
±
1 , χ

±
2 (NCC(b/c)). The dif-

ference between these was investigated in detail in Ref. [2] for the case of the CPX scenario
(M1 = (5/3)(s2W /c2W )M2, MSUSY =500 GeV, Aq,l=900 GeV, φM1

=0, φµ=0, φM3
= π/2,

φAf3
= π/2, φAf1,2

= π, tanβ = 5.5 and MH± = 132.1GeV, M2=200 GeV and µ=2000
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NNN NNC NCC NCCb NCCc NCCb* NCCc*

δ|M1| -1.468 -1.465 -1.468 2517 -3685 -365.4 -4.671
δ|M2| -9.265 -9.265 -9.410 -9.410 -9.410 13.23 13.23
δ|µ| -18.48 -18.98 -18.98 -18.98 -18.98 -5.333 -5.333

∆mχ̃0
1

0 0 0 2517. -3681 -5.809 -0.522

∆mχ̃0
2

0 0 -0.1446 0 0.3560 0 -0.4806

∆mχ̃0
3

0 -0.5018 -0.5016 -0.8447 0 -354.9 0

∆mχ̃0
4

0.3238 -0.1775 -0.1775 0.6851 -1.439 -0.1734 -0.1548

∆m
χ̃
±

1

0.1446 0.1445 0 0 0 0 0

∆m
χ̃
±
2

0.5012 0 0 0 0 0 0

Table 1: Finite parts of parameter RCs and mass corrections in GeV for the CPX scenario
(see text). The columns denoted with an asterisk are for a higgsino-like scenario.

GeV) and a higgsino-like variant of the CPX scenario (µ = 200GeV and M2 = 1000GeV).
As seen in Tab. 1, not only should the choice be made such that external particles are
on-shell, but also such that the given MSSM scenario is considered. To be more precise,
in a gaugino-like scenario, where M1 < M2 ≪ µ, the values of the parameters M1, M2

and µ broadly determine the values of the masses of χ0
1, χ

0
2/χ

±
1 and χ0

3/4/χ
±
2 respectively,

such that NNN, NNC and NCC are suitable. On the other hand a higgsino-like scenario,
where µ ≪ M1 < M2, would mean the values of the parameters M1, M2 and µ are closely
related the values of the masses χ0

3, χ
0
4/χ

±
2 and χ0

1/2/χ
±
1 respectively, such that NCCc is

suitable. Whichever scenario is being studied, one physical mass which can constrain each
fundamental parameter must be chosen on-shell. Failing to do so will result in numerically
unstable RCs, therefore possibly taking large unphysical values. This was also investigated
in detail, including the case of strongly mixed scenarios, in Ref. [11].

Choosing on-shell conditions suited to determine the phase RCs is not obvious. However,
assuming an on-shell scheme as well as the requirement [2],

δZR
0,11 = δZ̄R

0,11, δZL
0,11 = δZ̄L

0,11, δZR
±,22 = δZ̄R

−,22, δZL
±,22 = δZ̄L

−,22, (4)

the expressions obtained for δφM1
and δφµ were shown to be UV-convergent. Note that

this conditions can be understood as imposing that the imaginary parts of the diagonal field
RCs for the on-shell particles vanish. We therefore choose not to renormalise the phases,
which is more convenient than a specific renormalisation scheme as the phases remain at
their tree-level value.

3 Numerical analysis

We now wish to utilise the above renormalisation framework to calculate σ(e+e− → χ̃+
i χ̃

−
j )

at NLO, including full MSSM corrections and allowing parameters to be complex. The NLO
corrections were calculated in the real case in Refs. [12, 14]. The details of our calculation
and definitions for the parameters can be found in Ref. [3]. Here we simply state the results
for the scenario given in Tab. 2, varying the phases φAt

, φAb
, φAτ

, φM1
, φM3

and φµ within
bounds taking into account the EDM constraints [16].
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Figure 1: The upper plots show δσ/σ for e+e− → χ̃+
1 χ̃

−
2 as a function of the phase φt for

Mq̃3= 600 (left) and 800 (right) GeV. The lower plots show δσ/σ for e+e− → χ̃+
1(,L)χ̃

−
2(,R)

(left (right)) as a function of φAt
, for Mq̃3=500 GeV, including/ignoring (solid/dashed) the

absorptive parts.

Par. Value Par. Value

|M1| 100 GeV M2 200 GeV
|µ| 420 GeV MH+ 800 GeV
|M3| 1000 GeV tan β 20
Mq̃1,2 1000 GeV Mq̃3 500-800 GeV
M

l̃1,2
400 GeV M

l̃3
500 GeV

|Aq| 1300 GeV |Al| 1000 GeV

Table 2: Table of parameters, where Aq/l are
the quark/lepton trilinear couplings.

We study the relative size of the weak
1-loop corrections to the production cross-
section, δσ/σ = (σweak−σtree)/σtree, where
σweak is defined in Ref. [3], for a

√
s =800

GeV LC. We find that the only phase that
results in effects above O(%) is φAt

, and
in Fig. 1 show that the dependence on this
phase leads to effects of up to ∼ 12% for
Mq̃3=600 GeV and up to ∼ 6% forMq̃3=800
GeV. In Fig. 1 we also show plots of δσ/σ

as a functions of φAt
for the case of unpolarised and polarised charginos, showing the impact

of ignoring the absorptive parts. There is seen to be a significant discrepancy between the
two results of up to ∼ 2%, which could be phenomenologically relevant at linear collider
precisions, and therefore for consistency we must ensure the absorptive parts are properly
included in calculations in the complex MSSM.

4 Conclusions

We have defined a consistent renormalisation framework in the on-shell scheme in order to
calculate NLO corrections to e+e− → χ̃+

i χ̃
−
j in the complex MSSM. In doing this we find

that a careful choice of the three on-shell conditions for the chargino and neutralino masses
is required, as illustrated in Tab. 1, and that the phases do not require renormalisation. In
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addition we use independent field RCs δZ
L/R
±,ij and δZ̄

R/L
±,ji , in order to include the absorptive

parts of loop integrals, and have shown in Fig. 1 that these absorptive parts in the field RCs
can have a 2% effect on predictions at NLO. Finally, we have calculated the dependence
of the cross-section on the phases, showing in Fig. 1 that the phase φAt

has the strongest
effect, up to 12%.
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