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Description of quasi-realistic calorimeter hit digitisation in ILD, as imple-
mented in the ILDCaloDigi processor in the MarlinReco package.

1 Introduction

Possibilities for more realistic treatment of calorimeter hits from silicon– and
scintillator–based calorimeters have been implemented in the ILDCaloDigi

processor within MarlinReco. The aim of these is to allow the study of the
effects of various detector “defects” such as mis-calibrations, limited dynamic
ranges, and signal fluctuations, and also to allow more robust comparisons
between technologies under more realistic conditions. This notes discusses
the implementation as defined by rev. 4800 of the MarlinReco package,
available at https://svnsrv.desy.de/viewvc/marlinreco/MarlinReco/.

The energy of SimCalorimeterHits produced by the Mokka simulation
is the energy deposited in the detection element (silicon or scintillator) as
calculated by GEANT4. They therefore take account of Landau fluctuations in
the energy deposits. The role of the digitisation is to simulate the behaviour
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of the process which converts this energy deposit into the reconstructed en-
ergy of hits used in detector reconstruction: this includes effects due to the
detection medium (e.g. creation of electron-hole pairs in silicon), the read-
out system (e.g. pixelated photo-detectors (PPD - SiPM/MPPC)) used to
readout scintillation light, and the electronics which treat these signals (e.g.
limited dynamic range).

This note describes a parameterised model which to model such effects.
The parameters to be used should be decided by the detector groups, by
comparing to data collected during test beam campaigns.

ILDCaloDigi also applies a threshold on the energy of hits, as well as
possibilities for requirements on the timing of energy deposits. This pre-
existing functionality was extended from the original ILDCaloDigi on some
points.

2 General

The various effects implemented for realistic digitisation are controlled by
parameters of the ILDCaloDigi processor which can be set at run time via
the Marlin steering file (i.e. without recompiling). Most parameters are
duplicated, with one set for the ECAL, and the other for the HCAL, allowing
different parameters to be used for the each of the systems. In this note, we
denote these duplicated parameters as “*§CAL*”: “§” should be replace by
“E” for the ECAL, and “H” for the HCAL.

Which type of digitisation to apply to ECAL hits is controlled by the
ECAL apply realistic digi parameter: a value of 0 (the default) turns off
the realistic effects described in this note, and a value of 1 (2) applies the
silicon– (scintillator–) specific effects. In the case of the scintillator HCAL,
the parameter HCAL apply realistic digi plays a similar role, with a value
of 0 (1) turning off (on) the simulation of realistic digitisation effects.

Several digitisation parameters are specified in terms of MIP units, so the
ILDCaloDigi processor requires factors with which to convert the deposited
energy (in GeV) to MIP units: these are passed by the Calib§CALMIP pa-
rameters.

Various detector parameters are taken from the gear file, in particular
the layer layout and number of virtual cells per scintillator strip in the case
of a scintillator strip-based ECAL. If these are not available in the gear file,
they can be specified via the parameters ECAL default layerConfig and
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StripEcal default nVirtualCells (if values are found in the gear file,
they take precedence over the value of these parameters).

3 Timing and energy thresholds

Mokka provides a list of single energy deposition contributions from Geant4,
including deposited energy in GeV and time stamp in ns for each active
detector volume (cell or strip). To increase realism of the simulation, cuts
on energy and timing of these hits can be applied.

3.1 Energy threshold

Hits in once detector cell are only kept after the digitisation stage if the
hit amplitude is above a threshold. This threshold can be configured by the
§calThreshold steering parameters. The unit used for interpreting the given
threshold is chosen by setting §CALThresholdUnit to either GeV for deposited
energy in GeV (default), MIP for deposited energy in MIP equivalents, or px
for deposited energy in SiPM pixels. MIP and px require appropriate settings
of the digitisation parameters explained in section 6.

3.2 Hit timing

It is imperative to run the preceding Mokka simulation with
/Mokka/init/lcioDetailedShowerMode true. Otherwise, detailed subhit
information will not be stored to the output file, which is necessary for hit
timing selections to work properly (see also [3]).

Two different algorithms for hit timing selection can be chosen via
§CALSimpleTimingCut.

If §CALSimpleTimingCut is true, all hit contribu-
tions with hit time between §CALTimeWindowMin and
§CALBarrelTimeWindowMax/§CALEndcapTimeWindowMax are summed
into the digitised hit. The hit time of the output is set to the earliest
subhit within that time window. This timing mode resembles test beam
measurements with the CALICE physics prototypes using external trigger
and a fixed acquisition time window.

If §CALSimpleTimingCut is false, a more complex algorithm is applied.
It aims to cluster hits in time into windows of §CALDeltaTimeHitResolution
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and generates individual output hits for each of these time clusters. This may
be useful to simulate more complex aqcuisition electronics, but needs very
careful setup of parameters. Especially the SPIROC chip currently used in
the CALICE AHCAL and ScECAL prototypes cannot be well modeled by
this. Also with the current implementation, it is possible to lose contribu-
tions within the general time window defined by §CALTimeWindowMin and
§CALTimeWindowMax. It is thus advised to use §CALSimpleTimingCut true

at the moment.

4 Technology-blind effects

4.1 Mis-calibrations

The effect of imperfect energy calibrations can be simulated by
the use of the parameters §CAL miscalibration uncorrel and
§CAL miscalibration correl, which causes hit energies to be smeared as

E ′ =E×
RandGauss(1, §CAL miscalibration uncorrel)×
RandGauss(1, §CAL miscalibration correl),

where RandGauss(µ, σ) represents a random number taken from a Gaus-
sian distribution of mean µ and standard deviation σ. In the case of
§CAL miscalibration uncorrel, a new random number is taken for each
calorimeter hit (simulating completely uncorrelated mis-calibrations), while
in the case of §CAL miscalibration correl, a single random number is used
for all §CAL hits in a given event (simulating completely correlated mis-
calibrations).

The uncorrelated miscalibrations induced by
§CAL miscalibration uncorrel of each detector cell can be chosen to be ei-
ther the same from event to event, or newly chosen for each event. This is con-
trolled by setting the parameter §CAL miscalibration uncorrel memorise

= true or false respectively. The first approach is closer to reality, however
in the case of a calorimeter with many cells, can lead to large memory
consumption; in the case of typical physics events randomly spread across
the whole ILD detector, the second, more memory-efficient, approach is
almost certainly sufficient. The first approach is probably only necessary in
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the case of repeated injection into the same detector region, as occurs, for
example, in test beams.

4.2 Dead detector cells

The effect of dead detector cells can be simulated by use of the parameter
§CAL deadCellRate, which causes the energy of hits to be set to zero if
a random number taken from a uniform distribution in the range [0, 1] is
smaller than the value of the §CAL deadCellRate parameter. Similar to
the miscalibration effects, the parameter §CAL deadCell memorise selects
whether dead cells are randomised for each event or constant for the whole
run.

4.3 Dynamic range of readout electronics

The saturation of the readout electronics can be simulated by setting the
parameter §CAL maxDynamicRange MIP, in which case the energy of the hit
is limited to this value of this parameter (specified in MIP units):

E ′MIP = min(§CAL maxDynamicRange MIP, EMIP ).

4.4 Noise

Uncorrelated, random noise can be simulated by the parameter
§CAL elec noise mips, which alters the hit energy by

E ′MIP = EMIP + RandGaus(0, §CAL elec noise mips).

5 Silicon ECAL hits

A rather simple approach is followed in the case of silicon readout: the en-
ergy deposit in the silicon is converted into a number of electron-hole (e-h)
pairs, using the parameter energyPerEHpair which gives the energy required
to create an e-h pair (in eV). This number of e-h pairs is then used to de-
fine the mean of a Poisson distribution, from which a random number is
taken to get a statistically smeared number of e-h pairs. This approach is
an over-simplification: it ignores, for example, the Fano effect which reduces
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the fluctuation of e-h pairs with respect to this simple Poisson approxima-
tion. Since these fluctuations are anyway much smaller than the Landau
fluctuations in energy deposit, they have an almost negligible effect.

6 Scintillator hits

In the case of the scintillator §CAL, several effects are included: non-
uniformity of response along the strip length, and the finite number of photo-
electrons and PPD pixels. These processes typically have much larger effects
than in the case of silicon-based readout. For the scintillator-based HCAL,
the same effects, except the strip non-uniformity, are included. The names
of the relevant parameters for the HCAL have “ECAL ” replaced by “HCAL ”.

Non-uniformity along strip length

In Mokka simulation, ECAL scintillator strips can be split along their length
into virtual cells, in each of which a SimCalorimeterHit can be produced.
ILDCaloDigi identifies all virtual-cell hits coming from the same strip, and
combines them into a single CalorimeterHit. Different weights can be
given to the energies of different virtual cells within a strip, to simulate non-
uniformity along the strip length. A simple exponential dependence has been
implemented, controlled by the parameter ECAL strip absorbtionLength.
The energy of the final CalorimeterHit is then given by

E ′MIP =
∑
i

Ei × exp(δxi/ECAL strip absorbtionLength)

where the index i runs over the virtual cells of a strip, and δxi is the distance
between the centres of the virtual cell and the strip. This energy is then
treated in the following steps:

Conversion of energy to MIP equivalents

The deposited energy in the scintillator is converted to MIP units using the
parameter Calib§CALMIP

EMIP = Calib§CALMIP× EGeV .
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Finite number of photo-electrons and PPD pixels

A finite number of photo-electrons (p.e.) are produced in the PPD by en-
ergy deposited in the scintillator. The energy deposited in the scintillator is
converted to an average number of photo-electrons in the PPD:

navepe = EMIP × §CAL PPD PE per MIP,

.
The finite number of PPD pixels introduces both a saturation effect on

the average response and additional signal fluctuations relevant mostly at
high signal levels. To include these statistical effects in photon generation
and PPD response two separate models have been proposed, called here the
Stoykov Model and the Binomial Model. Both proposed models of PPD
response ignore cross-talk between pixels, after pulses, and similar effects.

Stoykov Model

The Stoykov Model follows the calculation steps in [1], by first quantising
the number of photons hitting the PPD by taking the actual number of p.e.
npe randomly from a Poisson distribution with mean navepe . Using a Poisson
distribution is justified, as from the around 4500 photons generated per inci-
dent MIP [2] only around 15 (depending on the chosen §CAL PPD PE per MIP)
actually fire pixels in the PPD.

The average number of fired PPD pixels navepix for a given number of input
p.e. npe is modeled as

navepix = §CAL PPD N Pixels× (1− exp(−npe/§CAL PPD N Pixels)),

and fluctuations in the number of fired PPD pixels due to the limited number
of pixels are modeled as [1]:

npix =navepix + δn, where

δn =RandGauss(0, w)

w =
√
§CAL PPD N Pixels× exp(−α)× (1− (1 + α)× exp(−α))

α =navepix/§CAL PPD N Pixels

The terms given above are derived using an approximation of longer
terms. The validity of this approximation is shown in B. Modelling this
fluctuation with a Gaussian shape is somewhat problematic, as it should not
be possible to fire more PPD pixels than the number of incident photons.
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Binomial Model

In the Binomial Model, first the average number of fired PPD pixels is cal-
culated as

navepix = §CAL PPD N Pixels× (1− exp(−navepe /§CAL PPD N Pixels)),

.
This mean amplitude is then quantised by randomising it from a binomial

distribution with n = §CAL PPD N Pixels and p =
nave
pix

§CAL PPD N Pixels

While the Stoykov Model is intuitive in its succession of steps, it suffers
from the unknown shape of the fluctuation from finite PPD pixels. The
Binomial Model is less intuitive in its approach, but has been successfully
used in the digitisation of AHCAL physics prototype simulations.

In appendix A it is shown that the expected resolutions arising from these
digitisations are exactly identical for both models. As the Binomial Model
does not suffer the shape problems of the Stoykov Model, the Binoial Model
is used in this processor.

Variations in pixel response

Variations in individual pixel signals (due to e.g. variations in capacitance)
can be simulated by using the parameter §CAL pixel spread, which intro-
duces extra variations in the PPD signal nsigpe

nsigpix = npix × RandGauss(1, §CAL pixel spread/
√

(npix)).

Electronics noise

Electronics noise is then added to nsigpix, as described in section 4.

Mis-calibration of total pixel number, unfolding of av-
erage PPD response

A mis-calibration in this number of total PPD pixels can be introduced by
the parameter §CAL PPD N Pixels uncertainty, in which case the assumed
number of PPD pixels is defined to be:

Npix = §CAL PPD N Pixels×RandGauss(1, §CAL PPD N Pixels uncertainty).
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This mis-calibrated number of total pixels is then used to unfold the PPD
response by using the inverse of the saturation curve. If the fraction of fired
pixels r is less than 95%, the unfolding is done as

nunfold
pe = −Npix × log(1− nsigpix/Npix)),

while if r > 0.95, a linearised approximation is used to ensure good behaviour
at large r (for example in the case of miscalibrated Npix):

nunfold
pe = (nsigpix − r ×Npix)/(1− r)− nsigpix × log(1− r).

Conversion back to energy

The unfolded number of p.e. is then converted back into a scintillator energy
deposit using the parameters §CAL PPD PE per MIP and Calib§CALMIP.

7 Conclusion

Possibilities for realistic modeling of silicon– and scintillator–based calorime-
ter energy readout have been implemented in ILDCaloDigi. The modeling is
rather simple, but should be adequate to allow a comparably realistic simula-
tion of the different technologies. Tuning of the processor parameters should
be performed by comparisons with data collected by detector prototypes in
test beams.

Appendices

A Comparison of parametrisation models

We define a as the number of photons hitting the SiPM, n as the number of
different SiPM pixels hit from these a photons and the number of total SiPM
pixels m. Furthermore p = n/m denotes the fraction of fired SiPM pixels.
The relation between incoming photons (unsatured signal) and fired pixels
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(saturated response) is given by

n = fsat(a) = me−
a
m (1)

a = f−1sat(n) = −m log
(
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m

)
(2)
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a
m . (3)

Beginning with the variance of the binomial distribution:
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Converting to the unsaturated variance, following [1]:
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(7)

This yields the resolution of the binomial SiPM model:
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√
Varbinounsat

a
=

√
m
(
e

a
m − 1

)
a

(8)

It is easily seen, that this is equivalent to the parametrised resolution
ResoStoykov given in [1]:
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1√
m

√
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+
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√
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=

√
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= Resbino (10)
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B Full vs. approximate Variance [1]

In [1] the variance of the number N of urns containing one or more balls after
randomly distributing a (photons) balls into m urns (pixels) is given as

VarStoykov = m(m− 1)(1− 2m−1)a +m(1−m−1)a −m2(1−m−1)2a. (11)

This is claimed to be approximated by the shorter form

VarStoykovapprox = m(1− e
a
m ) (12)

for m,n→∞ and the ratio a/m bounded.
To check the validity of these assumptions, a simple comparison was per-

formed for a sensor with m = 2000 pixels. As shown in Figure 1, the dif-
ference between the full and approximate variance terms are very small for
amplitudes >10 pixels. Even for amplitudes 1ess 0px the observed mismatch
is far from relevant, as for the full resolution Poissonian uncertainty is added
in quadrature, which is orders of magnitude larger for such amplitudes. Ad-
ditionally, a threshold of 0.5 MIP (corresponding to about 7.5 pixels fired)
is expected for ILD operation. Thus low amplitude hits are not taken into
account at all.

From this we conclude, that the approximate variance form is suitable for
use in digitisation.
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(c) Variance ratio, full amplitude range
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Figure 1: Comparison of full and approximate variance terms as given in [1].
Only for very small amplitudes <10 pixels relevant deviations are visible.
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