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Abstract

The setup and features of a transverse polarimeter based on Compton scattering is

described for a 250 GeV electron (positron) beam and its performance is investigated via

a Monte Carlo data sample. The position of the Compton backward scattered electrons

are registered by a Silicon pixel detector situated some 38 meters away from the eγ

collision position. Specifically it is shown that, for the planned International Linear

Collider beam parameters at 250 GeV, a measurement of the transverse polarization

reaches a statistical precision of ≤ 0.5% within a very short time. The over all

systematic error is estimated to be ∼ 0.2%.
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1 Introduction

In planning future high energy e+e− linear colliders, like the International Linear Collider

(ILC) and the Compact Linear Collider (CLIC), the benefit of the implementation of a

longitudinal polarized e± beams has been stressed in many studies [1]. Although even if only

the electron beam is longitudinal polarized the collider physics capabilities is increased, as has

been demonstrated with the SLC, the situation where both beams are polarized allows

additional physics problems to be investigated.

More recently the benefit from the investigation of e+e− interactions with transversed

polarized beams has also been emphasized [2]. Unlike the case of the longitudinal polarization

in the transverse polarization case both the electron and the positron beams have to be

polarized in order to benefit from it. To utilize the transverse polarized colliding beams it is

necessary to have measuring devices that can measure the transverse polarization values, near

or at the e+e− interaction point (IPe+e− ), down to a level of 0.5% or even better.

At low electron beam energies transverse polarization measurement devices, denoted by

Transverse Polarimeters (TPOL), have been designed constructed and operated

successfully [3]. In the present work we study the feasibility to design and construct a

transverse polarimeter at high beam energy of 250 GeV, envisaged for the ILC, having a

precision of ≤ 0.5% via the Compton scattering of a polarized laser light off the e± beams.

2 The Compton scattering

For the basic formulae of the Compton scattering of a laser beam on an electron beam we

have followed closely reference [3]. In the electron center of mass (CM) system (see Fig. 1)

the differential Compton scattering is given by

dσ

dΩ
(S, P ) = Σ0 + S1Σ1 + S3[PyΣ2y + PzΣ2z ] (1)

where

Σ0 = C[(1 + cos2 θ) + (ki − kf)(1 − cos θ)]

Σ1 = C cos(2φ) sin2 θ)

Σ2y = −Ckf sin φ sin θ(1 − cos θ)

Σ2z = −C(1 − cos θ)(kf + ki) cos θ

Here P = (Px, Py, Pz) is the polarization of the initial electron in Cartesian coordinates. S1 is

the linear polarization component of the photon and S3 is the circular component of the

photon. The initial and final photon momenta ki and kf are defined in the electron CM

system and C = 0.5r2
0k

2
f/k

2
i where r0 is the classical radius of the electron. The angles θ and φ
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Figure 1: Geometry and coordinate system of the Compton scattering, showing in (a) the incoming

electron rest frame and in (b) in the laboratory system both for the back scattering angles of the

photon. In (c) the process is shown in the laboratory system for the scattered electron.

are the polar and azimuthal angles of the backward scattered photon in the electron CM

system. To transform these formulae to the laboratory system one has the relations

cos θ =
Ebeam − Eγ(1 + 1/ki)

Ebeam − Eγ

and Eγ = Ebeam + Eλ − Ee (2)

where the energies are defined in the laboratory system and Ee is the energy of the scattered

electron. The electron scattered angle in the laboratory system is given by

θlab
e =

Y

1 − Y

me

Ebeam

√

2ki

Y
− (2ki + 1) (3)

where Y = 1 − Ee/Ebeam. The method for the determination of the electron transverse

polarization involves the measurement of the y distribution of the scattered electrons on the

detector surface which is placed perpendicular to the beam direction. In term of the scattered

polar and azimuthal angles y is equal to

y = D sin φ tan θlab
e

θlab
e �1−→ D sin φθlab

e (4)

where D is the distance between the Compton interaction point and the detector surface. In

practice one considers < y >, the average value of the measured y positions.

3 Transverse Polarimetry for the ILC

In our study we consider the case where the laser beam has no linear component and the

electron beam has no longitudinal polarization component. In this case the differential

Compton scattering expression given by Eq. 1 reduces to

dσ

dΩ
(S, P ) = Σ0 + S3PyΣ2y (5)

where the relevant parameters of the ILC are: S1 = 0, S3 = ±1, Pz = 0, Ebeam = 250 GeV and

D = 37.95 m [8]. For the polarimeter we have taken a green laser of 2.33 eV. For a given Ee
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value the average y is given by;

〈y〉 =

∫ d2σ
dEedφ

ydφ
∫ d2σ

dEedφ
dφ

(6)

The distribution of 〈y〉 as a function of Ee for PT = 1.0 and S3 = +1 is shown in Fig. 2.

Figure 2: The 〈y〉 distribution as function of the scattered electron energy for the ILC setup with

PT = 100%, S3 = +1, λ = 2.33 eV and D = 37.95 m.

In order not to be dependent on the exact y position of the IPγe it is a safer way to determine

the polarization via the measurement of the difference in 〈y〉 between the left and right

helicity states of the laser (S = ±1), i.e.

〈y〉 S3=+1 − 〈y〉 S3=−1

2
= PT Π(Ee) (7)

where PT is the transverse polarization level and Π(Ee), the Analyzing Power (AP) of the

polarimeter, is its value for a 100% polarization. In this way one assures that the measured

effect is indeed due to a vertical electron polarization and is not due to an instrumental

deficiency.

4 The γe Luminosity

4.1 Luminosity for a continuous laser

The luminosity L of a continuous laser colliding with a round pulsed electron beam, that is

σx = σy = σ, can be expressed [4] as:

L =
1 + cos θ0√

2π

Ie

e

WLλ

hc2

1
√

σ2
e + σ2

γ

1

sin θ0

, (8)

where θ0 is the crossing angle of the two beams, Ie is the mean electron current, WL is the

power of the laser, λ is the wavelength of the laser and σe and σγ are the rms beam sizes. As
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Figure 3: The relative eγ luminosity as a function of the crossing angle θ0 of the incident electron

and laser beams.

expected, the luminosity will decrease substantially when the angle between the laser and the

beam will approach 90o (see in Fig. 3) so that a continuous laser beam perpendicular to the

electron beam will result in an undesired very low luminosity3. For a small crossing angle θ0

one has:

L = 8.36 1024cm−2s−1 λ
√

σ2
e + σ2

γ

IeWL

θ0

. (9)

According to Ref. [5] at the ILC where σe � σγ, and with the following parameters settings:

θ0 = 0.01 rad,

λ = 532 nm = 2.33 eV,

σγ = 50 µm,

WL = 0.5 W,

Ie = 9 µA,
one obtains a luminosity of

L(γe) = 1.75 × 1029 cm−2s−1 . (10)

4.2 The luminosity value with a pulsed laser

For a pulsed laser the γe luminosity is given by [6]:

L = fbNeNγg (11)

where fb is the number of bunch crossing per second, Ne the number of electrons per bunch,

Nγ the number of photons per laser pulse and g is a geometrical factor which takes in account

the spatial overlap of the two beams. For a small crossing angle θ0 one has:

g−1 = 2π
√

σ2
xe + σ2

xγ

√

(σ2
ye + σ2

yγ)cos
2(θ0/2) + (σ2

ze + σ2
zγ)sin

2(θ0/2) . (12)

3Note that θ0 = 0o means here that the laser and the beam directions are exactly opposite.
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If the transverse dimensions of the electron beam are small in comparison to the laser focus

i.e., σxe � σxγ and σye � σyγ (which certainly is valid at the IPγe region), one obtains for g−1

:

g−1 = 2πσxγσyγ

√

1 + (0.5θ0σzγ/σyγ)2 (13)

and for the luminosity:

L =
fbNeNγ

2πσxγσyγ

√

1 + (0.5θ0σzγ/σyγ)2
=

Lmax
√

1 + (0.5θ0σzγ/σyγ)2
(14)

where Lmax is the maximum luminosity reached at very small θ0 angle for a given transverse

size σxγσyγ , namely:

Lmax =
fbNeNγ

2πσxγσyγ

. (15)

Note that this last formula is very similar to the expression given for the luminosity of e+e−

colliding beams. In the ILC, the dimensions of the electron bunches at IPe+e− are smaller

than that of the laser. The number of bunches per second is fb = 14100 and each bunch

consists of Ne = 2 × 1010 electrons. From this follows that the eγ luminosity at the IPγe is

Lmax(IPγe) = 4.49 × Nγ

σxγσyγ

1013cm−2s−1 (16)

where Nγ is the number of laser photons per pulse and the laser is fired in synchronization

with the same pulse repetition rate as the accelerator. For a round laser focus with

σxγ = σyγ = 50µm one obtains:

Lmax(IPγe) = 1.12 × jγ [µJ ]

εγ [eV ]
1031cm−2s−1 (17)

where jγ and εγ are the laser current and energy. The Compton eγ luminosity at the ILC

operating at 0.25 TeV beam energy for three pulsed laser configurations are shown in Table 1.

Table 1: Compton eγ luminosity before the IPe+e− of the ILC operating at 0.25 TeV beam energy

with a round pulsed laser of σxγ = σyγ = 50µm. A full synchronization between the beam bunches

and the laser repetition is assumed.

εγ λ < WL > jγ Lmax

(eV) (nm) (Watt) (µJ) (1031cm−2s−1)

1.165 1064 1 71 68.3

2.33 532 0.5 35 16.8

4.66 266 0.2 14 3.4
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5 The polarimeter setup

A sketch of the Compton scattering collision setup is shown in Fig. 4. The 250 GeV electron

beam is moving in the +z direction reaching the first two B1(−y) and B2(+y) magnets which

steer the beam to a parallel straight trajectory. In position 2 the laser beam collides with the

electron beam. The unperturbed beam is then restored to its original trajectory by the set of

the B2(+y) and B1(−y) magnets all of which have a strength of 0.097 T. The scattered

electrons which suffered a loss of energy will be separated in the x direction according to their

energy values to reach the detector at a distance of 37.95 m.

Figure 4: The setup scheme of the laser collision with the 250 GeV electron beam which moves in the

z direction. The magnets are steering the beam to a parallel trajectory for the laser collision point and

back to their original direction. The scattered electrons are deviated from the bean direction toward

a detector 37.95 m away.

5.1 The energy spectrometer

Figure 5: Left: The scattered electron energy as a function of the x shift from the non-scattered

beam. Right: The transverse polarization analyzing power Π(x) as a function of the x shift.
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Figure 6: The general scheme of the envisaged ILC of the four magnets chicane for the Compton

polarimetry taken from Ref. [8]. The shifted electron beam shown by the solid line is colliding with

the laser beam and then restored to its original trajectory (dashed line). The scattered electrons are

separated according to their energy values. The 45.6 GeV beam (dot dashed line) is planned to be

used for calibration purposes.
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The relation between x and the energy of the scattered electrons is shown in Fig. 5(left) was

determined from a Monte Carlo (MC) program [7] using the actual general scheme of the

envisaged ILC four magnets chicane [8] as shown in Fig. 6. A fit to the distribution shown in

Fig. 5(left) yields

Ee =
106

4 + 18.04 · x[mm]
MeV . (18)

By replacing the energy dependence in Eq. 7 by its dependence on x according to Eq. 18 one

obtains the dependence of AP on x. As can be seen from in Fig. 5(right), the AP changes

considerably with x and reaches its maximum value around 70 mm from the main beam

direction.

5.2 The detector

For the detection of the scattered electrons we consider only a position measurement using a

Silicon pixel detector placed at a distance of 37.95 m from the Compton IPγe . The active

dimension of the detector is 2×200 mm2. The size of the pixels cell taken is 50 × 400 µm2

similar to the one used in the ATLAS detector [9]. This scheme yields an approximate two

dimensional resolution of 14.4× 115.5 mµ2 [10] with a data read-out rate of 160 Mb/sec.

For the simulation and analysis of the polarization measurement we have used a Monte Carlo

program which generates the Compton scattering and simulates the polarimeter setup [7].

6 The polarization measurement

Figure 7: A MC ILC simulated pixel detector image, in arbitrary units, after it was hit for 1 sec by

the Compton scattered electrons for S3 = +1 and PT = 0.9.
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6.1 The measurement method

For the measurement of the polarization we have used the scattered electron detector hits in

the left and right (S3 = +1 and S3 = −1) helicity positions of the laser. A 1 second typical hit

distribution of the detector is shown in Fig. 7 for S3 = +1 and PT = 0.9. After the readout of

the pixel detector’s x and y positions of the hits we calculate the average 〈y〉 as a function of

x sampled in 2 mm steps for the two laser helicity states. In Fig, 8(left) the y distribution for

S3 = +1 is shown in the range of 36 mm ≤ x ≤ 38 mm where a clear asymmetry due to the

transverse polarization is seen.

Figure 8: Monte Carlo data simulation. Left: The distribution of y within the x range of 36 to 38

mm from the electron beam direction for the S3 = +1 helicity and PT = 0.9. A clear asymmetry due

to the transverse polarization is seen. Right: The dependence of PT Π(x) on x reevaluated in steps of

2 mm obtained from 1 sec run. The solid line is the results of a fit of Eq. 19 to the Monte Carlo data.

We next calculate the quantity (〈y〉L − 〈y〉R)/2 as a function of x. The results for 1 sec run

(14100 bunches) are shown in Fig. 8(right) where the small fluctuations of the MC data

points are due to the finite beam dimension and the pixel detector resolution. Next we fit PT

from the MC data in a given x range around its maximum value according to Eq. 19

∆y(x) =
〈y〉L − 〈y〉R

2

∣

∣

∣

∣

∣

X

= PT Π(x) (19)

where Π(x) is the analyzing power. The result of the fit, shown by the solid line in Fig.

8(right), yielded PT = 0.899 ± 0.003, with χ2/dof =1.39, which agrees very well with the MC

input value of PT = 0.9.
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6.2 The statistical error

We have evaluated the statistical error on the transverse polarizations measurements from our

Monte Carlo data sample assuming a zero detector dead time. Obviously this error is related

to the number of scattered electrons recorded by the detector. This is shown in Fig. 9 where

the error dependence on the measurement time can be expressed by

∆PT /PT = 0.29 × t−0.53 %. As expected, already for a very short measurement time, the

statistical error can be neglected in comparison with the systematic errors which are discussed

in the following section.

Figure 9: The measurement statistical error on a PT = 0.9 level as a function of the measuring time

derived from the Monte Carlo data sample assuming zero detector dead time.

6.3 The systematic errors

Figure 10: The deviation of the Silicon pixel detector orientation which is set to be perpendicular to

the non-scattered electron beam that moves in the z direction.

A substantial contribution to the systematic error of the polarization measurement is coming

from possible y displacement of the IPγe and or the pixel detector. Due to the fact that the
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Figure 11: The ∆PT dependence on ∆y calculated for PT = 0.9 via a MC program. The statistical

errors correspond to a measurement time of 1 minute with the ILC and polarimeter setup as described

in the text.

dimension of the pixels are finite, in our setup of 50 µm in the y direction, one does not

achieve a complete ∆y compensation via Eq. 7. From our MC simulation we obtain a

quasi-sinusoidal dependence of ∆PT on ∆y which is shown in Fig. 11. As expected a

maximum compensation of the ∆y displacement is reached when its value is n × 50 µm where

|n| is equal to zero or an integer. At the same time the systematic error on |PT | does not

exceed the value of ∼ 0.13%. This systematic error and other ones have been estimated by

changing individually various parameters of the planned ILC and its polarimeter setup

according to their uncertainties estimated in Ref. [5]. These are listed in Table 2. The first

three parameters of the table concern the displacements of the IPγe or the pixel detector

positions. The next three parameters are associated with detector orientation with respect to

the beam position as defined in Fig. 10. The next two parameters are related to the magnetic

field of the spectrometer. The following pair of parameters are connected to the beam tremor

and the last two parameters are related to the beam energy uncertainty. As seen from the

table, the over all systematic error added in quadrature amounts to 0.20 % . Additional

sources of systematic error like those related to the radiation background from the collider

and the polarimeter structure will have to be evaluated after their detailed design and

construction.
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Table 2: A list of the collider and polarimeter setup parameters that are expected to contribute to

the systematic errors of the transverse polarization measurement. From the assessed systematic un-

certainties of these parameters the corresponding systematic errors were obtained from a MC program

simulating the ILC polarimeter features with a beam polarization value of PT = 0.9.

Source of the systematic error ∆ |∆PT |%
∆y axis displacement ≥ 25 µm 0.13

∆x axis displacement 0.1 mm 0.007

∆z axis displacement 1 cm 0.08

∆α deviation of the detector 0.10 0.002

∆β deviation of the detector 0.10 0.004

∆γ deviation of the detector 0.10 0.1

Spectrometer ∆B1 0.0001 T 0.02

Spectrometer ∆B2 0.0001 T 0.005

y axis beam position tremor 5 µm 0.01

x axis beam position tremor 5 µm 0.03

Beam energy tremor 0.22 GeV 0.03

∆Ebeam beam energy 0.22 GeV 0.052

√

∑

i ∆P 2
i 0.20%
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