
Triple Gauge Couplings and Polarization at the ILC

Philip Bechtle, Wolfgang Ehrenfeld, Ivan Marchesini

Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany

The work presented in this note was developed in the framework of detector R&D and
physics studies for the International Linear Collider (ILC), a planned e

+
e
− accelerator

that will reach center of mass energies up to 500 GeV in its first stage.

A simultaneous measurement of longitudinal beam polarization and Triple Gauge Cou-
plings (TGCs) at the ILC is implemented, using fully simulated Monte Carlo events.
In order to perform such a measurement, semileptonic decays of the W -pairs at

√
s =

500 GeV are selected. Additionally, two techniques to measure the polarization alone
are also compared.

Assuming 80% longitudinal polarization for the electron beam and 60% for the positron
beam, a statistical relative precision of better than 0.2% on the average beam polariza-
tion of both beams is achieved at an integrated luminosity of 250 fb−1. In the option
of a low positron polarization of 30%, with an integrated luminosity of 500 fb−1 the
statistical relative precision on the average polarization is ∼ 0.1% for the electron beam
and ∼ 0.35% for the positron beam. Three independent TGCs are fitted simultane-
ously with the polarization, without loosing sensitivity on the polarization. An absolute
statistical uncertainty on the couplings is reached of the order of 10−3.
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1 Introduction

During the last decades experimental evidences of the Standard Model (SM) have been accu-
mulated at several experiments and the SM has come to be regarded as the best description
of electromagnetic, weak and strong interactions up to the investigated energies. However,
despite the many successes, some shortcomings have been identified and new theories have
been formulated to rectify them.

A relevant feature of the SM is the presence of non-Abelian self-couplings between the
gauge bosons, that carry the electromagnetic and the weak forces: the W s, the Z and the γ.
In particular, triple couplings between the gauge bosons in the vertices WWγ and WWZ
occur, as largely experimentally established. A precise measurement of the TGCs not only
represents a proof of the SM expectations, but is also a window to eventual new physics
not predicted by the SM, contributing to the TGCs through the effect of new particles and
couplings via radiative corrections. Should the new physics be not directly accessible at the
available center-of-mass energies of ongoing or upcoming experiments, being sensitive to it
via deviations from the SM values of the TGCs would be particularly relevant.

The measurement of the TGCs was performed at LEP (Large Electron-Positron col-
lider) and Tevatron experiments. No deviations from the SM were observed, but the limits
obtained at these experiments can be significantly improved at future colliders.

Today’s most powerful high energy physics project is the proton-proton Large Hadron
Collider (LHC) at CERN, where no major improvement on the experimental limits on
anomalous couplings in the vertices WWγ and WWZ is expected. Unprecedented precisions
could be achieved at a future lepton collider, such as the International Linear Collider (ILC),
a planned e+e− accelerator that will be able to reach center of mass energies up to 500GeV
in its first phase.

One of the unique features of the ILC is the possibility of both electron and positron
beam polarization. A longitudinal electron polarization of at least 80% is part of the ILC
baseline design in the Reference Design Report (RDR) and the option of a longitudinal
positron polarization is also considered. The positron beam produced by the RDR baseline
source has a polarization of 30% and beamline space has been reserved for an eventual
upgrade up to a polarization of 60%.

The physics program of the ILC highly benefits from having polarized beams. The
polarization provides a tool for strongly improving the sensitivity to new physics in SM
precision tests, in searches for new particles and for the measurement of the interactions
of new physics. For many of these applications, the benefit of the polarization is effective,
provided that the systematics from the uncertainty on the beam polarization are brought
to a negligible level.

While polarimeters are used to measure the polarization on a bunch-by-bunch basis,
the absolute calibration of the average luminosity-weighted polarization at the interaction
point (IP) with respect to the measurement of the polarimeters, can only be obtained using
a physics process. The W -pair production can be used to achieve this goal, due to its
strong sensitivity to the beam polarization. The W -pair process is also a golden channel
for the measurement of the TGCs, as the LEP experience teaches. Hence, it is possible to
combine the two measurements in a global fit of polarization and TGCs. Such a measurement
has been implemented using fully-simulated W -pairs in the International Large Detector
(ILD) [1] model for the ILC, at

√
s = 500 GeV. In order to measure the W charge with

high purity, only semileptonic decays (qq̄lν) of the W -pair are selected, where one W decays
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either into an electron or a muon, and the associated neutrino, while the other decays into
a quark-antiquark pair.

Two techniques to measure the polarization alone have also been compared: i) the mod-
ified Blondel scheme, only relying on the different total cross sections of the W +W− pro-
duction for different incoming beam polarizations; and ii) the angular fit method, which
uses the distribution of the production angle cos θW of the W− with respect to the e− beam
axis. When fitting simultaneously the polarization and the TGCs, two angular observables
describing the leptonic decay of the W are also exploited.

2 Triple Gauge Couplings

The electromagnetic and the weak interactions are treated together in the SM as a unified
gauge theory. The gauge group of the electroweak sector of the SM is:

SU(2)L ⊗ U(1)Y . (1)

The SU(2) gauge transformation acts on left-handed (L) weak isospin (I) doublets,
while the U(1) gauge theory acts on isospin singlets assigned the hypercharge Y . The weak
hypercharges are chosen to reproduce the observed electric charges, through the connection

Q = I3 +
1

2
Y , known as the Gell-Mann-Nishijima formula.

The non-Abelian nature of the SU(2)L group results in self-interactions between the
gauge bosons. In particular, a TGC term is present in the Lagrangian, that can be expressed
as [2]:

LTGC = − 1
2
g(∂µW i

ν − ∂νW i
µ)εijkW jµW kν

= ig sin θW (Ŵ−
µνW+µ − Ŵ+

µνW−µ)Aµ + ig sin θW ÂµνW−µW+ν

+ ig cos θW (Ŵ−
µνW+µ − Ŵ+

µνW−µ)Zν + ig cos θW ẐµνW−µW+ν ,

(2)

where i, j = 1, 2, V̂µν = ∂µVν − ∂νVµ and Vµ = Wµ, Aµ, Zµ. The first and the second
terms describe the γWW vertex with coupling strengths e = g sin θW while the third and
the fourth terms describe the ZWW vertex with coupling strengths g cos θW = e/ tan θW .

The TGC term is experimentally well established. Fig. 1 shows the measured cross
section of the W -pair production at LEP [3]. The prediction of the SM agrees perfectly with
the data only when the TGC vertices are included. Under different assumptions it would
follow a completely wrong trend.

This result represents a notable success of the gauge theory. At the time of the formula-
tion of the SM, the necessity of gauge bosons self-couplings was not driven by experimental
observations or theoretical motivations. In fact, the gauge self-couplings are not inserted
by hand in the framework, but arise naturally when applying the gauge principle to a non-
Abelian symmetry group. Only afterward it has been experimentally confirmed that this
feature is actually realized in nature.

New physics not predicted by the SM would contribute to the TGCs through the effect
of new particles and couplings via radiative corrections. A general, model independent and
phenomenological approach to physics beyond the SM is given by the effective Lagrangian [5].
In this approach, the SM is considered as an effective sub theory, providing a low energy
approximation of a Grander Theory (GT). The GT would manifest itself at low energies
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Figure 1: The dependence of σWW on
√

s as measured at LEP. The error bars include
statistical and systematic contributions. The lower dashed curve shows the cross section that
would be expected if the WWZ couplings were zero, while the upper dashed curve refers to
the case where both the WWZ and the WWγ vertices are excluded. The continuous curve
shows the SM expectations with all the TGC vertices included. From [4].

through small deviations from the SM, which can be described by an effective Lagrangian,
having a purely phenomenological meaning. The effective Lagrangian parametrizes in a
model-independent way, i.e. in the most general way, the effects of the GT at low energies.

The effective Lagrangian for the TGCs in the vertices WWγ and WWZ is given by [6]:

iLWWV
eff = gWWV

[

gV
1 V µ

(

W−
µνW+ν − W+

µνW−ν
)

+ κV W+
µ W−

ν V µν + (3)

λV

m2
W

V µνW+ρ
ν W−

ρµ + igV
5 εµνρσ

(

(∂ρW−µ)W+ν − W−µ(∂ρW+ν)
)

V σ

+igV
4 W−

µ W+
ν (∂µV ν + ∂νV µ) − κ̃V

2
W−

µ W+
ν εµνρσVρσ −

λ̃V

2m2
W

W−
ρµW+µ

νενραβVαβ

]

,

where V ≡ γ or Z, the overall couplings are defined as gWWγ = e and gWWZ = e cot θW

and ε0123 = 1. Equation 3 gives the most general Lorentz invariant WWV vertex. It in-
troduces fourteen complex parameters, i.e. 28 real couplings. In the SM, at tree level, the
non-null couplings are gZ

1 = gγ
1 = κZ = κγ = 1, while all other couplings are vanishing.

Electromagnetic gauge invariance fixes gγ
1 = 1 and gγ

5 = 0, when considering on-shell pho-
tons. gV

1 , κV and λV conserve C and P separately, while gV
5 violates C and P but conserves

CP . Finally, gV
4 , κ̃V and λ̃V parameterize a possible CP -violation in the bosonic sector [6].

The couplings can be related to physical properties of the gauge bosons. The charge
QW , the magnetic dipole moment µW and the electric quadrupole moment qW of the W+
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Decay Mode BR averaged ε
qqqq 45 % 85 %
µν qq 15 % 80 %
e ν qq 15 % 80 %
τν qq 15 % 60 %
`ν`ν 10 % 65 %

Table 1: WW decay modes with relative branching ratios BR and average selection efficien-
cies ε at the LEP experiments. From [4].

can be related to the C- and P -conserving couplings [7]:

QW = egγ
1 , µW =

e

2mW

(gγ
1 + κγ + λγ) , qW = − e

m2
W

(κγ − λγ) . (4)

So far, the best limits on the TGCs have been obtained at LEP [8]. The couplings have
been experimentally tested using the e+e− → W+W− process. The angular distributions
of the W -pair are more sensitive to the TGCs than the inclusive measurement, based on
the total cross section. The differential W -pair cross sections with respect to 5 angles are
considered:

• the angle θW between the W− and the e− beam;

• the polar and azimuthal angles of the fermion in the decay W− → ff̄ calculated in
the rest frame of the W−;

• the corresponding polar and azimuthal angles of the fermion in the decay of the W +.

All the possible WW decays, summarized in Tab. 1 together with the branching ratios
and the corresponding average selection efficiencies, are taken into account for the final
combined results of the LEP experiments [8]. In addition, also the single-W [9, 10] (e+e− →
W∓e±ν(ν̄)) and the single-γ [11, 12] (e+e− → γν̄eνe) productions are exploited, being
sensitive to the WWγ vertex.

Some assumptions are made to reduce the number of free parameters in Eq. 3. Assuming
C and P conservation the 14 complex couplings are reduced to 6 real couplings: gγ

1 , gZ
1 , kγ ,

kZ , λγ and λZ . gγ
1 is fixed by requiring electromagnetic gauge invariance. The requirement

of local SU(2)L × U(1)Y gauge invariance introduces the further constraints [13]:

∆kZ = −∆kγ tan2 θW + ∆gZ
1

λγ = λZ , (5)

with ∆ indicating the deviation from the SM tree-level value and θW the electroweak
mixing angle. One is then left with three independent real couplings: gZ

1 , kγ and λγ .
Fits to these three TGCs are performed with methods where only one parameter is

allowed to vary and the other two are fixed to their SM prediction. The constraints ob-
tained combining the results from the LEP experiments are shown in Fig. 2. No significant
deviations from the SM are found, within a few percent precision.
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for the combined results (thick black curve). The uncertainties indicate the 68% C.L. limits
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The ALEPH experiment at LEP also performed a fit to all 14 complex couplings, relaxing
all the constraints on C and P conservation and on electromagnetic and SU(2)L × U(1)Y

gauge invariance [14]. Out of all the 28 real parameters one at the time was allowed to vary,
while the others were fixed to the SM predictions. The results of this test for the already
considered couplings do not show significant deviations from the SM:

Re(gZ
1 ) = 1.066± 0.076

Re(kγ) = 1.071± 0.061

Re(λγ) = 0.096± 0.066. (6)

The same is true for all the remaining couplings.

The Tevatron experiments have confirmed the results obtained at LEP, without improv-
ing the precision [15, 16]. While the LHC will excel in the measurement of the neutral
ZZZ and ZZγ couplings, which are not discussed in this note, the foreseen experimental
uncertainties on the TGCs is at the 10−2 level and is not expected to improve significantly
the current limits [17]. A breakthrough can be made at the future ILC, where it is possible
to gain one order of magnitude in the uncertainty on the TGCs, reaching a sensitivity of
the order of 10−3, as shown in the following.

3 W-pair Production and Polarization

Indicating with NR (NL) the number of beam particles with definite right-handed (left-
handed) helicity λ = + 1

2
(λ = − 1

2
), the longitudinal polarization of the beam is defined

as:

NR − NL

NR + NL

. (7)

Since the beam particles can be regarded as being massless, the helicity corresponds to
their chirality.

The beam polarization will maximize the physics potential of the ILC, both in the perfor-
mance of precision tests and measurements of the SM, and also in revealing the properties
of new physics beyond the SM, such as Supersymmetry. The most general benefit given
by having polarized beams is the increase in available statistics and hence a reduction of
the statistical errors. In many studies the beam polarization allows to enhance the signal,
while suppressing background contributions. This is particularly important for searches of
new physics, for which the signal rates are expected to be extremely small compared to the
SM background. Furthermore, it should be noted that the beam polarization is essential to
address several important studies, such as the measurement of the chiral quantum numbers
of new particles. For a complete treatment of the topic we refer the interested reader to
reference [18], which also underlines the importance of having both the beams polarized. In
fact, a high electron polarization alone does not replace the essential contribution of having
a polarized positron beam in addition.

With longitudinally-polarized beams one can distinguish between two different cases,
depending on the production diagrams:
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Figure 3: Possible configurations in s-channel diagrams: the helicities of the incoming e+e−

beams are directly coupled. Within the SM only the recombination into a vector particle
with J = 1 is possible, which is given by the LR (Left-handed electron, Right-handed
positron) and RL configurations. New physics models might contribute to J = 1 but also
to J = 0, hence the LL or RR configurations. From [18].
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Figure 4: Possible configurations in t- and u-channel diagrams: the helicity of the incoming
beam is directly coupled to the helicity of the final particle and is completely independent
from the helicity of the second incoming particle. From [18].

• in annihilation diagrams, as shown in Fig. 3, the helicities of the incoming beams are
coupled to each other. In the SM they need to be opposite from one another in order
to recombine into the vector boson mediator, the Z or the γ, since only in this way
they can add up to give J = 1. This might not be true in case of new physics. Some
models allow s-channel diagrams to be mediated by a scalar particle.

• in exchange diagrams, as shown in Fig. 4, the helicities of the incoming beams are
directly coupled to the helicities of the final particles. In this case all helicity config-
urations for the beams are in principle possible, although some constraints might be
given by the allowed couplings between the beam particles and the produced ones.

In Fig. 5 the leading tree-level Feynman diagrams for the W +W− production are shown.
In the two s-channel diagrams (center and right) the incoming e+ and e− annihilate to give
the vector boson mediator. As explained above, in the SM only the recombination into
a vector particle with J = 1 is possible, i.e. the beams have to carry opposite helicities.
This constraint is no longer valid for the t-channel diagram (left). Since W -bosons can only
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Figure 5: Leading tree-level Feynman diagrams for the W +W− production. On the left the
t-channel with ν exchange, in the center and on the right the two s-channels with γ or Z0

exchange.

couple to left-handed electrons and right-handed positrons, this channel is suppressed for the
polarization configuration with right-handed electrons and left-handed positrons and also in
the case of same helicity beams. As a consequence of this behavior, the total cross section
for the W -pair is strongly sensitive to the polarization, as shown in Fig. 6. The visible peak
in the distribution, corresponding to left-handed electrons and right-handed positrons, is
due to the t-channel enhancement for such polarizations.

The t- and the s-channel not only have a different dependence on the polarization, but
also generate a different topology of the W -pair, since the t-channel production is more
boosted in the forward region.

These features make the W -pair production a perfect candidate for the measurement
of the luminosity-weighted polarization. In addition, the large cross section has statistical
benefits. Since the results obtained at LEP show that the W -pair production is an excel-
lent channel also for the measurement of the TGCs (Sec. 2), this channel is suitable for a
simultaneous measurement of polarization and TGCs, as shown below.

The present study is only concerned with longitudinal polarization. For completeness,
it should be mentioned that the physics program at the ILC would benefit also from
transversely-polarized beams [18]. In particular, although longitudinally-polarized beams
are sufficient to measure most TGCs, in the most general case, where a non-null imaginary
part is also allowed, the transverse polarization is necessary in order to be sensitive to the
imaginary parts of some couplings. However, in the here presented work we make the same
assumptions on the couplings used in the LEP combined results (Sec. 2) and only real TGCs
are considered.

4 Selection of W-pair Events

The present analysis relies on Monte Carlo events fully simulated using the ILD detector
model and includes the complete SM background. A center of mass energy of 500GeV and
an 80% longitudinally-polarized electron beam are assumed and two options are considered
for the longitudinal polarization of the positron beam: a high polarization of 60% and a low
polarization of 30%. The final results are reported for an integrated luminosity of 500 fb−1,
but propagations of the uncertainties at different luminosities are also shown.

This section illustrates how Monte Carlo samples for different polarizations are created
and describes in detail the selection applied in order to separate the signal from the back-
ground.
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Figure 6: Total cross section of the selected semi-semileptonic decay channels of the W -pairs
(Sec. 4.2) as a function of the electron and positron beam polarizations, at

√
s = 500GeV.

4.1 Polarization Configurations

The Monte Carlo events are generated for 100%-polarized beams. Events from different files,
corresponding to different polarization configurations, need to be properly mixed in order to
obtain realistic cases of partial polarizations Pe+ and Pe− . The number of events generated
with a polarization of P (e+, e−) = (±100%,±100%) to be used is given by:

Nevents
±± = σ±± · L · w±±(Pe+ , Pe−), (8)

where σ±± is the cross section of the considered process, L is the desired luminosity and
the necessary weight w±±(Pe+ , Pe−) is derived directly from the properties of the polariza-
tion:

P = PR − PL

PR + PL = 100. (9)

Here, P is the beam polarization and PR (PL) is the percentage of right-handed (left-
handed) events. For example, a +60% positron polarization is obtained mixing 80% events
with right-handed positron beam with 20% events with left-handed positron beam. Anal-
ogously, -80% electron polarization equals 10% right-handed and 90% left-handed electron
beam. Combining the two requests, to get +60% positron and -80% electron polarization,
one needs:
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weight++(+60,−80) = 80% · 10% = 0.08,

weight+−(+60,−80) = 80% · 90% = 0.72,

weight−+(+60,−80) = 20% · 10% = 0.02,

weight−−(+60,−80) = 20% · 90% = 0.18. (10)

This example can be generalized, obtaining the weight w±±(Pe+ , Pe−) for any other
desired polarization set. It should be noted that not all the four σ±± are necessarily non-
null. For example, for all processes occurring exclusively via s-channel only events with
P (e+, e−) = (+100%,−100%) and P (e+, e−) = (−100%, +100%) are available.

4.2 Selection

Due to the favorable reconstruction of the angular distributions only semileptonic decays
(qq̄lν) of the W -pair have been selected, where one W -boson decays either into an electron
or a muon, and its associated neutrino, while the other decays into a quark-antiquark pair.
The angular distribution of the W -pair is expressed by the cos θW variable, where θW is
the angle of the W− with respect to the e− beam axis. The charge of the lepton tags the
charges of the two W -bosons. Since the W -pair is emitted back-to-back, one can always
reconstruct the θW angle together with the W -boson invariant mass from the hadronically
decaying W -boson, using the four-momenta of the two jets produced in the decay. The same
information could be obtained, in principle, also from the leptonically decaying W -boson,
using the reconstructed lepton four-momentum and the missing four-momentum due to the
neutrino, but a lower precision would be achieved in this case (cf. Fig. 11).

The semileptonic decay in which the leptonically-decaying W -boson decays into a tau and
the associated neutrino has been excluded, since this signal has a larger background and the
determination of the charge of the lepton is less reliable, resulting from the possibility of the
candidate tau being formed from tracks from the fragmentation of the quarks. Additionally,
multiple neutrinos might be present in the final state due to the decay of the tau. This
channel is labeled in the following as tau-signal and is considered as background.

The other two excluded decay channels of the W -pair are the fully leptonic decay (lνlν),
in which each W -boson decays into a lepton and its associated neutrino, and the fully
hadronic decay (qq̄qq̄), in which each W -boson decays into two quarks. The fully hadronic
decay has not been selected, since the charge of the W -boson cannot be reconstructed with
sufficient precision from the jets of the hadronic decay. Moreover, a combinatoric background
is introduced, due to the different possible ways of combining the four jets of the decays
into two W -bosons. The fully leptonic decay is excluded as well, due to the lower cross
section and selection efficiency. The reconstruction of this channel is also disturbed by the
presence of multiple neutrinos in the final state. The different features, which characterize
the selection of the different decay channels of the W -pair, are fully described in the LEP
literature, see e.g. [19].

The selection has been optimized for a Monte Carlo sample of 20 fb−1 and the results
obtained have been propagated to higher luminosities. The entire SM background has been
taken into account. The complete four- and six-fermion, qq̄, γγ and Z-Strahlung background
is included, where the γγ processes are given by the interaction between two radiated or
Beamstrahlung photons, while the Z-Strahlung events are produced by the scattering of a
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Process Events % Weight

Signal 107233 0.071 1.00
Tau-Signal 52926 0.035 1.00

qq̄ 390727 0.258 1.00
4 Fermions 431247 0.285 1.00
6 Fermions 20808 0.014 1.00

γγ 1.50439e+08 99.338 179.98

Table 2: Number of initial signal and background events before the selection. The numbers
refer to a positron polarization of +30% and an electron polarization of -80%, at a luminosity
of 20 fb−1. The average weight applied to compensate for those processes, for which 20 fb−1

of statistics were not available, is also reported.

photon on a beam electron or positron. In the following these two backgrounds are grouped
together under the label γγ.

Not all processes were simulated with sufficient statistics. During the massive ILD Monte
Carlo production smaller luminosities were simulated for those processes with a very high
cross section and of relatively low importance for most of the physics analysis, most notably
the γγ-background. Therefore, the events for these processes need to be given a weight
greater than 1 to compensate the low number of events available. However, the γγ is a
minor and non-dangerous background for the selected final state and the need of a higher
weight does not represent a significant statistical limitation.

Tab. 2 shows the initial amount of background and signal events, before any selection.
The numbers refer to a positron polarization of +30% and an electron polarization of -80%
for an integrated luminosity of 20 fb−1. The same configuration was also chosen for all the
figures and tables appearing in this section.

As a preselection of semileptonic W -pair decays, the following criteria, illustrated in
Fig. 7, are applied:

• track multiplicity ≥ 10;

• center of mass energy
√

s > 100GeV;

• total transverse momentum PT > 5GeV;

• total energy ESUM < 500GeV;

The first two requirements mainly constrain the γγ and the qq̄ SM background, the third
and fourth account for the expected missing momentum, due to the neutrino.

The DURHAM jet finder algorithm [20] is applied, forcing the event into three jets: one
jet is associated to the lepton and two jets are generated by the quarks produced in the
hadronic decay of the W -boson. The jet with the lowest number of particles is identified
with the lepton. Clearly, it is not a jet in the physical sense of a compact cascade of particles,
but as a distinct object identified using the jet finder algorithm. The lepton could have been
isolated, in principle, also employing a specific lepton-finder software, but such an algorithm
was not available in the ILCSoft framework at the time this analysis was developed. However,
since the lepton tends to occupy a different spacial region, with respect to the jets from the
hadronic decay, the jet finder identifies it easily as a separate object. This procedure results
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Figure 7: Variables used in the preselection of W -pairs. The actual cut values are indicated
by the lines and the accepted regions by the arrows. Top left: track multiplicity. Top right:
center of mass energy

√
s. Bottom left: total transverse momentum PT . Bottom right: total

energy ESUM .
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Figure 8: Logarithm of the y+ (left) and y− (right) variables of the jet finder algorithm.
The actual cut values are indicated by the lines and the accepted regions by the arrows.

in the correct assignment and the proper charge reconstruction of the lepton in about 92%
of the cases. An additional criterion is applied to the y+ and y− variables of the jet finder,
where the logarithm of the y+ (y−) variable is accepted in the range [-12,-3] ([-9,-1.5]). The
y variables and the accepted ranges are shown in Fig. 8.

The jet associated with the lepton is required to have at least one track with energy
> 10 GeV and to be isolated from the other two jets. The separation is expressed by means
of the following angular selection:

(φlep − φhad) < π → ∆Ωiso =

√

(θlep − θhad)2 + (φlep − φhad)2 > 0.5,

(φlep − φhad) ≥ π → ∆Ωiso =

√

(θlep − θhad)
2 + (2π− | φlep − φhad |)2 > 0.5. (11)

where θlep and φlep are the polar and the azimuthal angles of the jet associated with the
lepton, while θhad and φhad are the polar and the azimuthal angles of one of the two jets
produced in the hadronic decay of the W -boson, respectively (the same request is repeated
for both jets). The isolation variable ∆Ωiso is shown in Fig. 9 (left).

The suppression of the tau-signal is performed using the following discriminating variable:

τdiscr =

(

2Elep√
s

)2

+

(

mlep
W

mtrue
W

)2

< 1, (12)

where Elep is the reconstructed lepton energy, mlep
W is the W -boson mass as reconstructed

from the leptonic decay and mtrue
W is the nominal mass of the W -boson. Candidates for

which τdiscr < 1 are considered tau-signal events and rejected. Figure 9 (right) shows the
discriminating variable.

In order to better reconstruct the missing momentum and consequently the W -boson
leptonic decay, a simple calculation is done to correct for ISR photons lost along the beam
pipe without being measured by the forward calorimeters. The four-momentum conservation
leads to the following equations containing the missing momentum of the neutrino, the
missing momentum of the lost ISR photons and the total measured momentum:

14
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Figure 9: Left: isolation of the jet associated to the lepton from the other two jets, produced
in the hadronic decay of the W -boson. The isolation is expressed by means of the ∆Ωiso

variable defined in Eq. 11. Right: discriminating variable τdiscr used to suppress the con-
tribution of those W -pair semileptonic events, in which one W -boson decays into a tau and
the associated neutrino. The definition of the variable is given in Eq. 12. The semileptonic
W -boson decays into electrons and muons (signal) are shown in green, while those involving
taus (tau-signal) are shown in blue. The discrimination is performed requiring τdiscr > 1.

Px + Pν,x = 0,

Py + Pν,y = 0,

Pz + Pν,z + Pγ = 0,

Eν =
√

P 2
ν,x + P 2

ν,y + P 2
ν,z,

E2
γ = P 2

γ ,

E + Eν + Eγ = 500, (13)

where Px, Py , Pz are the components of the total measured momentum, E is the total
measured energy, Pν and Eν are the neutrino missing momentum and energy, Pγ and Eγ are
the photon momentum and energy. The indices x and y indicate the transverse coordinates
(perpendicular to the beam axis), while z denotes the direction along the beam axis. The
photon is assumed to have negligible transverse momentum components (x, y), since it is
assumed to be lost in the beam pipe.

These equations give two possible solutions for the photon energy:

Eγ =
(500 − E)2 − P 2

x − P 2
y − P 2

z

1000− 2E − 2Pz

,

Eγ =
(500 − E)2 − P 2

x − P 2
y − P 2

z

1000− 2E + 2Pz

, (14)

and, therefore, two different momenta for the neutrino. For each set of solutions the
W -boson invariant mass is calculated from the invariant mass of the lepton and the re-
constructed missing energy of the neutrino. The solution giving a W -boson invariant mass
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W -boson (mlep

W ) is applied before the ISR correction. The invariant mass mlep

W is accepted

in the range [20,250]GeV. Right: measured mlep

W distribution before (green) and after (blue)
the ISR correction.

closer to its nominal value is chosen. The benefit of the ISR correction on the reconstruction
of mlep

W is shown in Fig. 10 (right).
As a consequence of the ISR correction, the invariant mass of the jet associated with the

lepton and the missing momentum might be artificially shifted closer to the nominal mass
of the W -boson for some backgrounds. This might cause a selection requirement on the
measured mlep

W to be less effective in terms of background rejection. In order to minimize

this side effect, mlep
W is accepted only in the range [20,250]GeV before applying the ISR

correction, as shown in Fig. 10.
After the ISR correction, both mhad

W (the invariant mass of the products of the W -boson

hadronic decay) and mlep
W are required to be in the range [40,120]GeV. Both W -boson

invariant masses, mhad
W and mlep

W , together with their resolutions are shown in Fig. 11.
Finally, the angular requirement cos θW > −0.95 is applied, as shown in Fig. 12 (left).

The resolution obtained in the reconstruction of cos θW is shown in Fig. 12 (right).
The details of the selection are summarized in Tab. 3. The full Monte Carlo sample is

sorted in the six groups defined above: signal, tau-signal, qq̄, four- and six-fermions and γγ.
The final efficiency of the selection is about 67%. The selected events include 10% tau-signal
events and only 6% of other backgrounds.

5 Measurement of the Polarization

In this section two techniques to measure the beam polarization are considered, while the
additional measurement of the TGCs is introduced in the next section. The systematic
uncertainty that anomalous values of the TGCs would introduce on the measurement of the
polarization is calculated in Sec. 6.2.

5.1 The Modified Blondel Scheme

The first method considered is a modified Blondel scheme [21]. The original Blondel scheme
was intended for processes of electron positron annihilation into two fermions and proposed

16



 [GeV]had
Wm

0 50 100 150

n 
ev

en
ts

0

2000

4000

6000

8000

10000 Signal
Tau signal
qq

4 ferm
6 ferm
γγ

 [GeV]lep
Wm

0 50 100 150

n 
ev

en
ts

0

2000

4000

6000

8000
Signal
Tau signal
qq

4 ferm
6 ferm
γγ

had,T
W

)/mhad,T
W-m had

W
(m

-0.4 -0.2 0 0.2 0.4

n 
ev

en
ts

0

2000

4000

6000

lep,T
W

)/mlep,T
W-m lep

W
(m

-0.4 -0.2 0 0.2 0.4

n 
ev

en
ts

0

2000

4000

6000

Figure 11: Mass of the W -boson as reconstructed from the hadronic decay mhad
W (top left)

and from the leptonic decay mlep
W (top right). The two bottom distributions show the

respective resolutions with mhad,T
W and mlep,T

W indicating the true invariant masses from
Monte Carlo simulations.

 [rad]Wθcos
-1 -0.5 0 0.5 1

n 
ev

en
ts

310

410

Signal
Tau signal
qq

4 ferm
6 ferm
γγ

T
Wθ)/cosT

Wθ-cos Wθ(cos
-0.04 -0.02 0 0.02 0.04

n 
ev

en
ts

0

5000

10000

15000

Figure 12: Left: the angular distribution cos θW , with the applied requirement cos θW >
-0.95. Right: resolution of cos θW , with cos θT

W indicating the true value from Monte Carlo
simulations.



Cut Signal Tau-Signal qq̄ 4 Fermions 6 Fermions γγ

Initial events 107233 52926 390727 431247 20808 1.50439e+08
n tracks > 10 107229 52925 389290 290297 20663 1.50306e+07√

s > 100GeV 105050 51384 255396 275494 20532 1.14302e+06
PT > 5 GeV 103681 50539 109917 139264 18185 64510.6
ESUM < 500GeV 102259 50502 87326 126275 17604 61484.6
y cuts 101882 50394 84292 122163 15714 43260.6
lepton 84443 39166 31720 76241 13415 16223.9

20 < mlep
W < 250 82149 31951 26361 52364 12955 9712.53

tau selection 79423 11226 16236 30726 9943 7061.11
charge lepton 78830 10123 8720 21934 6636 6775.07
isolation 78730 10050 6016 21569 6625 6472.16

40 < mlep
W < 120 75204 8936 4308 14100 4351 3890.29

40 < mhad
W < 120 71776 8422 972 2915 267 2862.12

cos θW > −0.95 71611 8287 875 2548 256 1188.53

Final events 71611 8287 875 2548 256 1188.53
Efficiency (66.78 ± 0.14)% (15.66 ± 0.16)% (0.2240 ± 0.0076)% (0.591 ± 0.011)% (1.230 ± 0.076)% (7.90 ± 0.23)·10−4%

Table 3: Detailed cut flow of the selection. The full Monte Carlo sample is sorted in six groups: signal, tau-signal, qq̄, four- and
six-fermion SM background and γγ. The event numbers refer to a positron polarization of +30% and an electron polarization of
-80% for an integrated luminosity of 20 fb−1.



to collect some data also with unpolarized beams. Contrary to this, a similar method is here
applied to the W -pair production, which has also a t-channel component and, in addition,
the altered method does not require data collection with unpolarized beams. Hence, it is
called modified Blondel scheme.

5.1.1 Theory

This technique requires to spend some luminosity on all the four possible combinations of
the polarization of the beams: ++, +−, −+ and −−, where the first and the second sign are
respectively the sign of the polarization of the positron and of the electron beam. Moreover,
the absolute polarization values of the left- and right-handed degrees of beam polarization
are required to be equal. Polarization measurements with dedicated polarimeters are needed
to measure possible deviations. The beam polarization is then obtained by measuring the
total cross section for each helicity configuration [22]:

| Pe± |=
√

(σ−+ + σ+− − σ−− − σ++)(±σ−+ ∓ σ+− + σ−− − σ++)

(σ−+ + σ+− + σ−− + σ++)(±σ−+ ∓ σ+− − σ−− + σ++)
, (15)

where σ+− is the total cross section measured for right-handed positron beam and left-
handed electron beam (σ−−, σ+− and σ−+ are defined analogously) and Pe+ (Pe−) is the
resulting positron (electron) beam polarization.

5.1.2 Application

The total cross section is given by:

σ =
Nsig

L · εsig

, (16)

where Nsig is the number of selected signal events, L is the luminosity and εsig is the
signal selection efficiency. The selection efficiency is defined, as usual, as the percentage of
signal events satisfying the selection criteria.

The number of selected signal events, Nsig , is obtained from the number of selected
events Ntot, rescaled in order to account for a residual background contamination. First,
the purity Psig+τ is defined, which expresses the fraction of signal and tau-signal events in
the total amount of selected events:

Psig+τ =
Nsig+τ

Ntot

. (17)

The number of signal and tau-signal events Nsig+τ is, consequently, calculated as:

Nsig+τ = Ntot · Psig+τ . (18)

Finally, Nsig is obtained from Nsig+τ :

Nsig =
Nsig+τ

1 + BRτ ·ετ

BRsig ·εsig

, (19)

where BRτ (BRsig) is the known branching ratio of a W -boson decaying into a tau
lepton and its associated neutrino (towards a muon or an electron and associated neutrino).
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Figure 13: Statistical precision on the polarization obtained with the modified Blondel
scheme. Left: results for the low polarization case, with 80% electron beam and 30%
positron beam polarization. Right: results for the 60% positron polarization option. The
red (blue) curves show the percentage error on the positron (electron) polarization as a
function of the total luminosity, which is assumed to be shared equally between the four
polarization sets. The horizontal line indicates the optimum precision of 0.2%.

The efficiency ετ is the percentage of tau-signal events satisfying the selection criteria. In
the error propagation the experimental uncertainties on the branching ratios are assumed
to be negligible with respect to those on the efficiencies.

The four cross sections σ+−, σ−−, σ+− and σ−+ have been measured using Monte Carlo
samples for an integrated luminosity of 20 fb−1. Equation 15 has then been applied and the
statistical uncertainty on the measured polarizations has been calculated. The error has been
propagated towards higher luminosities, as shown in Fig. 13 for both polarization options.
The distribution on the left (right) shows the results obtained with 80% electron and 30%
(60%) positron polarization. The total luminosity is assumed to be shared equally between
the four polarization sets. For an integrated luminosity of 500 fb−1 and a high polarization
of the positron beam the precision obtained on the electron and positron polarizations is
∼ 0.1% and ∼ 0.22%, respectively. In case of a 30%-polarized positron beam, precisions
of the order of 0.5% on the positron polarization and 0.2% on the electron polarization
are obtained, respectively. Considering the goal of a precision of the order of 0.2% on the
polarization, the low positron polarization option appears strongly unfavoured.

5.2 The Angular Fit

The Blondel scheme requires high luminosities in order to obtain small uncertainties on
the polarization. This motivates the quest of alternative techniques. In this section an-
other method is described, denominated angular fit, which relies on the cos θW observable
(defined in Sec. 4.2). In this way, also the additional information relative to the W -pair
production angle is exploited in the polarization measurement, while the Blondel technique
uses exclusively the total cross section information. The total cross section still enters the
measurement via the normalization of the cos θW distributions.

The angular fit method is based on the creation of Monte Carlo templates of the cos θW

distribution for several sets of the beam polarization. The cos θW distributions of the data
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Figure 14: Content of the bins of the cos θW distribution as a function of the positron and
electron beam polarization. The distributions on the right are created using normalized
cos θW distributions. The upper (lower) distributions refer to the bin covering the cos θW

range [−0.8,−0.7] ([0.9,1.0]), a region where the s-channel (t-channel) production prevails.

are fitted to the templates in order to measure the polarization. The creation of the templates
and the structure of the fit are described in the following.

5.2.1 Templates of cos θW

The Monte Carlo files are mixed (Sec. 4.1) in order to create 99 samples with different polar-
izations, scanning the polarization of the electron (positron) in the interval [−90%, +90%]
([−70%, +70%]). The selection (Sec. 4.2) is applied to each sample, obtaining 99 cos θW

distributions, one for each polarization set. Each distribution is divided into 20 bins, which
cover the full range of variability of cos θW [−0.95,+1]. For each bin the three-dimensional
distribution of the bin content vs. the polarization of electron and positron is created. These
distributions are filled with 99 points, corresponding to the 99 polarization sets considered.
The results for two of the 20 cos θW bins are illustrated in Fig. 14 (left). The distribu-
tions reflect clearly the total cross section dependency on the polarization of the beams (cf.
Fig. 6). They have been created using Monte Carlo samples corresponding to an integrated
luminosity of 20 fb−1 for each polarization set.

The same procedure has been repeated using normalized cos θW distributions. The nor-
malization cancels the contribution from the total cross section, leaving only the information
relative to the angle of production of the W -pair, which is the additional observable intro-
duced with respect to the Blondel scheme. The results are shown in Fig. 14 (right).
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Different topologies and a different dependency on the polarization are expected, de-
pending on the production diagram of the W -pair (Sec. 3). This is confirmed by comparing
the two diagrams generated from normalized cos θW distributions. The upper (lower) distri-
bution in Fig. 14 (right) refers to the bin covering the cos θW range [−0.8,−0.7] ([0.9,1.0]),
a region where the s-channel (t-channel) production prevails. The expected t-channel sup-
pression for left-handed positrons and right-handed electrons is clearly visible in the lower
distribution, while the upper distribution shows the clear relative enhancement of the s-
channel contribution for this polarization combination.

For the purpose of measuring the polarization the distributions for non-normalized cos θW

distributions are used, since they contain the additional information of the total cross section.
In order to find a continuous function of the beam polarization, they are fitted with 2D
quadratic functions. An illustrative example of a fitted surface is shown in Fig. 15 (left).
The 20 2D-functions obtained for the 20 cos θW bins are called templates in the following.

It should be noted that the background events surviving the selection have not been
subtracted, when creating the distributions in Fig. 14, since the smoothness of the distri-
bution is not spoiled by the presence of the residual background. This benefits the error
propagation in the polarization measurement (details of the fit procedure are given in the
following). The smoothness of the distributions is confirmed by the distribution on the right-
hand side in Fig. 15, which shows the deviations of one of the template functions (namely
for the cos θW bin [0.9,1.0]) from the discrete points it fits. The residuals are always below
one sigma. Statistically, deviations up to three sigma would be expected. The fact that the
deviations are so remarkably small is due to statistical independence reasons. The discrete
points of the distributions come from the same Monte Carlo sample. For obvious CPU time
convenience a new Monte Carlo sample was not simulated for each of the 99 polarization
configurations considered. The same Monte Carlo files for 100% polarized beams have been
mixed repeatedly to create the 99 different polarization sets. This does not introduce a bias,
since there is no error associated to the Monte Carlo templates in the polarization extraction
fit. The statistical error of the Monte Carlo templates can be easily reduced with respect
to the error on the data in a real experiment, producing Monte Carlo samples for higher
luminosities. What is relevant, is the statistical independence of the Monte Carlo sample
taking the role of data. This is assured by random smearings, as explained in the following.

5.2.2 Performance of the Angular Fit

For a direct comparison with the modified Blondel scheme, the angular fit was first applied
to the same data set and making the same assumption, that while reversing the sign of
the polarization the absolute value remains the same. The data set consists again of four
samples for the ++, +−, −+ and −− helicity combinations. The total integrated luminosity
is shared equally between the four samples. At the end of this section the performance of
the fit is also investigated for different conditions.

The cos θW distributions for the data are obtained directly from the templates. The
content of each bin of the distributions is derived from the template specific for that bin,
evaluating the function for the desired polarization of the beams. In order to assure statistical
independence a Poissonian random smearing is applied to the value obtained. As already
mentioned, the original templates have been created for an integrated luminosity of 20 fb−1,
but the results are propagated to higher luminosities changing the normalization of the
template functions. The data distributions are fitted to the templates using MINUIT [23]
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Figure 15: Left: content of the bin of the cos θW distribution, covering the range [0.9,1.0],
as a function of the polarization of the positron and electron beam. The two-dimensional
function fitting the distribution is also drawn. Right: deviations of the fitting surface from
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Figure 16: Distributions of the fitted parameters when applying the angular fit with two free
parameters, the absolute values of the electron and the positron beam polarizations. The left
(right) distribution shows the distribution of the fitted positron (electron) polarization for
the option of 60% positron and 80% electron polarization and for an integrated luminosity
of 500 fb−1. The fit statistical errors on the measured polarizations are given by the widths
of the fitted Gaussians.

and a χ2 minimization. The χ2 function is defined as:

χ2 =

4
∑

j=1

20
∑

i=1

(NDATA
i,j − fi(±Pe+ ,±Pe−))2

NDATA
i,j

, (20)

where NDATA
i,j is the content of the i-th bin of the cos θW distribution for the j-th data

sample of the four data samples for the different helicity sets. The Monte Carlo template fi

for the same bin of cos θW and the polarizations Pe+ and Pe− depend on the sample j.
The fit has first been performed with two free parameters, the absolute value of the

polarizations of the beams. For each considered luminosity the fit is repeated several times,
changing randomly the Poissonian smearing of the data distributions for each iteration. The
resulting fitted parameters are Gaussian distributed around the expected value, as shown in
Fig. 16. The fit statistical errors are obtained from the widths of the Gaussian fitted to the
parameter distributions.

The error determination has been checked like this in order not to trust blindly the
MINUIT output. Moreover, with this technique it is possible to check not only the correct
distributions of the fitted parameters, but also the behavior of the fit probability and the
correlations between the parameters.

The fit probability is shown in Fig. 17 (e.g. for 60% positron and 80% electron polar-
ization and for an integrated luminosity of 500 fb−1). It is flat as expected for a correct fit.
The correlation between the two fit parameters is negligible for both positron polarization
options (see Tab. 4).

The precision achieved with the angular fit method is summarized in Fig. 18, where it is
compared with the Blondel method. For the 60% positron polarization option and a total
luminosity of 250 fb−1 (Fig. 18, right) the desired relative precision of 0.2% is obtained for
both polarizations. In case of low positron polarization an integrated luminosity of 1200 fb−1

is needed to achieve the same uncertainty. In this case, with an integrated luminosity of
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Figure 17: Distribution of the fit probability for the angular fit with two free parameters for
the option of 60% positron and 80% electron polarization and an integrated luminosity of
500 fb−1.

e+ pol % ++ −− ∆Pe+/Pe+% ∆Pe−/Pe−% corr%

30 50 0.34 0.08 6.6
60 50 0.14 0.08 3.4
60 20 0.18 0.11 33.4
60 10 0.23 0.14 58.4

Table 4: Summary of the results obtained with the angular fit method for a total integrated
luminosity of 500 fb−1. The percentage of the total luminosity spent on the same-sign
helicity configurations of the beams is shown in the second column. The results are shown
for an electron polarization of 80%, while both positron polarization options are considered:
Pe+ = 30% and Pe+ = 60%.

500 fb−1 precisions of ∼ 0.1% on the electron polarization and of ∼ 0.35% on the positron
polarization are obtained.

The angular fit appears to be more powerful than the modified Blondel scheme, yielding
the same precisions at much lower luminosities.

For the 60% positron polarization option the performance of the fit has also been studied
reducing the luminosity spent on the ++ and −− polarization sets. Such configurations of
the helicities are of low interest for most of the physics studies, since they suppress the
s-channel production. The results obtained are shown in Fig. 19. When spending only 20%
(10%) of the total luminosity on the same-sign polarization sets, precisions of ∼ 0.1% on the
electron polarization and of ∼ 0.2% on the positron polarization are obtained at 400 fb−1

(600 fb−1). In case the luminosity is equally-shared between the four data samples, the same
results are obtained at 250 fb−1.

The correlation between the fitted polarizations increases when reducing the amount of
luminosity spent on the same-sign helicity sets. However, even reducing the percentage of
luminosity spent on the same-sign configurations to only 10%, the correlation between the
fitted parameters is still acceptable.

The results obtained with the angular fit method for an integrated luminosity of 500 fb−1

are summarized in Tab. 4.
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Figure 18: Comparison of the results obtained with the modified Blondel scheme (continuous
curves) and with the angular fit method (dots). The distribution on the left (right) shows the
results obtained for the low (high) polarization option, with 80% electron and 30% (60%)
positron polarization. The red (blue) curves show the percentage error on the positron
(electron) polarization as a function of the total luminosity, which is shared equally between
the four polarization sets.
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R1 R2 R3 R4 R5 R6 R7 R8 R9

∆gZ
1 +0.001 0 0 -0.001 0 0 +0.001 0 +0.001

∆κγ 0 +0.001 0 0 -0.001 0 +0.001 +0.001 0
∆λγ 0 0 +0.001 0 0 -0.001 0 +0.001 +0.001

Table 5: ∆gZ
1 , ∆κγ and ∆λγ values used to calculate the coefficients in Eq. 21.

6 Triple Gauge Couplings and Polarization

In this section the simulation of the TGCs using Whizard is illustrated and the additional
angular observables introduced to gain sensitivity to the TGCs are described. The systematic
impact that anomalous values of the TGCs might have on the performance of the partial
measurement of the only polarization is calculated. Finally, an extension of the angular fit
method is discussed, which allows a simultaneous measurement of the TGCs in addition to
the beam polarizations.

Only three independent couplings are considered, gZ
1 , κγ and λγ , as in the LEP analysis

(Sec. 2). Thanks to the foreseen high luminosity of the ILC, these couplings can be mea-
sured simultaneously, while in the LEP analysis they are measured in single fits, where one
parameter is allowed to vary and the other two are fixed.

6.1 Simulation of the Triple Gauge Couplings

In order to perform a fit, it is necessary to associate a weight to the Monte Carlo events.
This weight is expressed as a continuous function of the TGCs:

R(∆gZ
1 , ∆κγ , ∆λγ) = 1 + A∆gZ

1 + B∆κγ + C∆λγ + D∆gZ
1

2
+ E∆κγ

2 + F∆λγ
2

+G∆gZ
1 ∆κγ + H∆gZ

1 ∆λγ + I∆λγ∆κγ , (21)

where the function R(∆gZ
1 , ∆κγ , ∆λγ) describes the quadratic dependence of the differ-

ential cross sections on the three TGCs [2], and the ∆ in front of the TGC names indicates
that they are expressed as deviations from the SM value. The nine coefficients in Eq. 21
are obtained calculating the value assumed by R(∆gZ

1 , ∆κγ , ∆λγ) for the nine sets of TGCs
shown in Tab. 5.

The calculation of the weight for these specific values of the couplings is performed
using the same WHIZARD configuration used in the event generation. WHIZARD allows
to rescan a given event sample, recalculating the matrix element values event-by-event with
some modification applied. As a result, each event is assigned a weight, which takes into
account the changes due to the different TGC values without modifying the event kinematics.
This procedure is perfectly suitable for small tunings of some parameters, such as requiring
an anomalous value of the TGCs. With this technique nine weights Ri, i = 1, 2, ..., 9 are
obtained, for the nine sets of TGCs in Tab. 5:
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Parameter 68% C.L. Nominal Value

g1
Z 0.984+0.022

−0.019 1

κγ 0.973+0.044
−0.045 1

λγ −0.028+0.020
−0.021 0

Table 6: The 68% C.L. values for the three TGCs obtained from a combination of ALEPH,
L3 and OPAL results. In each case the parameter listed is varied while the other two are
fixed to their SM values. Both statistical and systematic errors are included. From [8].

R1 = 1 + A | ∆gZ
1 | +D | ∆gZ

1 |2,
R2 = 1 + B | ∆κγ | +E | ∆κγ |2,
R3 = 1 + C | ∆λγ | +F | ∆λγ |2,
R4 = 1 − A | ∆gZ

1 | +D | ∆gZ
1 |2,

R5 = 1 − B | ∆κγ | +E | ∆κγ |2,
R6 = 1 − C | ∆λγ | +F | ∆λγ |2,
R7 = 1 + A | ∆gZ

1 | +B | ∆κγ | +D | ∆gZ
1 |2 +E | ∆κγ |2 +G | ∆gZ

1 || ∆κγ |,
R8 = 1 + B | ∆κγ | +C | ∆λγ | +E | ∆κγ |2 +F | ∆λγ |2 +I | ∆κγ || ∆λγ |,
R9 = 1 + A | ∆gZ

1 | +C | ∆λγ | +D | ∆gZ
1 |2 +F | ∆λγ |2 +H | ∆gZ

1 || ∆λγ |, (22)

where |∆gZ
1 |=|∆κγ |=|∆λγ |=0.001. The value 0.001 is chosen, since it is the approximate

order of magnitude of the expected precision. Inverting these equations one derives the nine
coefficients A, B, C, D, E, F , G, H , I to be inserted into Eq. 21. The procedure is repeated
for each signal and tau-signal event, obtaining an individual expression of R(∆gZ

1 , ∆κγ , ∆λγ)
for each event. The impact of the TGCs on the small residual background contamination of
the event samples has been neglected.

6.2 Triple Gauge Couplings Impact

As motivated above, a precise measurement of the TGCs is extremely important in itself.
However, in this section it is shown that anomalous values of the TGCs might affect the
measurement of the polarization from the W -pair channel in a non-negligible way, further
motivating the study of a simultaneous fit.

Tab. 6 summarizes the final 68% C.L. TGCs values obtained at LEP combining the
results from ALEPH, L3 and OPAL, already discussed in Sec. 2.

The limits set by the LEP experiments are weak relative to the excellent performance
required for the polarization measurement at the ILC and might have a non-negligible sys-
tematic impact. This can easily be seen by changing the values of the TGCs in the Monte
Carlo “data” sample and repeating the polarization measurement. Using the reweighting
technique one coupling at a time was varied from its SM tree-level value used for the standard
event generation to either the upper, or the lower 1-σ limit set by the LEP experiments. For
example g1

Z has been changed from 1 to 1.202(= 0.984+0.022) and to 0.965(= 0.984−0.019).
The Blondel scheme and the angular fit method have been applied, using the Monte Carlo
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60% positron polarization
coupling g1

Z κγ λγ

∆ 0.006 -0.035 0.017 -0.072 -0.008 -0.049
Fit ∆pole+% -0.12 0.46 0.15 -1.18 -0.01 0.25

∆pole−% -0.15 0.55 0.24 -1.59 0.00 0.23
Blondel ∆pole+% -0.04 0.17 0.02 -0.39 -0.01 0.24

∆pole−% -0.04 0.18 0.04 -0.61 0.00 0.16

30% positron polarization
coupling g1

Z κγ λγ

∆ 0.006 -0.035 0.017 -0.072 -0.008 -0.049
Fit ∆pole+% -0.15 0.60 0.17 -1.34 -0.03 0.14

∆pole−% -0.20 0.69 0.33 -2.17 0.00 0.26
Blondel ∆pole+% -0.04 0.23 0.01 -0.25 -0.03 -0.14

∆pole−% -0.04 0.18 0.05 -0.61 0.00 0.14

Table 7: Systematic uncertainty on the polarization measurement introduced by anomalous
values of the TGCs. The upper (lower) part of the table refers to the 60% (30%) positron
polarization option. The TGCs are changed, one at a time, by a difference ∆ from the
SM tree-level value, leaving the others fixed. The chosen differences ∆ are the maximum
deviations from the SM, allowed by the LEP 68% C.L. limits. The deviations of the measured
positron (electron) polarizations ∆pole+ (∆pole−) from the true values are also indicated.

samples with anomalous values of the TGCs as “data”. The results obtained are summarized
in Tab. 7.

The systematic uncertainty introduced by propagating the experimental error on the
TGCs is too high, when considering that precisions of the order of 0.2% on the polarizations
are desired. The angular fit method would allow to control the effect of the TGCs by
monitoring the χ2 (which would be blown up by wrong assumptions on the values of the
couplings). The full capabilities of the angular fit method can be exploited by implementing
a simultaneous fit of the TGCs and the polarization. In order to gain sensitivity to the
couplings new observables are introduced into the fit. They are described in the following.

6.3 Decay Angles of the W-pair

In order to maximize the sensitivity to the TGCs, two more observables are introduced
characterizing the leptonic decay of the W -boson. A W -pair event is described by five
angles, as illustrated in Fig. 20.

The angle θW , already introduced previously, is the angle between the incoming electron
beam and the outgoing W−. The four angles cos θ∗ and φ∗ describe the decays of the two
W -bosons in their rest frame. They are defined as the angles of the down-type decay product
fd in the right-handed coordinate system of the W -boson rest frame, where the two decay
products are back-to-back. The z-axis of each decay coordinate system coincide with the
parent W -boson direction in the overall center-of-mass system, while the y-axes direction is
given by ~e− × ~W , where ~e− is the direction of the incoming electron beam and ~W is the
flight direction of the parent W -boson. The decay angles can be classified corresponding to
the decay type (hadronic or leptonic). The angles describing the hadronic (leptonic) decay
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Figure 20: Definition of the angles in an e+e− → W+W− event.

are called cos θ∗h (cos θ∗l ) and φ∗
h (φ∗

l ).
The hadronic decay angles suffer from a two-fold ambiguity, due to the unknown charge

of the quarks. The two quarks are back-to-back in the rest frame of the W -boson and the
resulting ambiguity is:

(cos θ∗h, φ∗
h) ↔ (− cos θ∗h, φ∗

h + π), (23)

which is folded in the following way:

φ∗
h > 0 → (cos θ∗h, φ∗

h)

φ∗
h < 0 → (− cos θ∗h, φ∗

h + π). (24)

However, for the present study only the angles describing the leptonic decay are used.
Their distributions are shown in Fig. 21, with the respective resolutions. Fig. 22 compares
the cos θW distribution with no anomalous TGCs with a scenario in which an anomalous
value was assigned to the gZ

1 coupling in order to exemplify the impact of the TGCs on the
angular observables.

6.4 Simultaneous Fit

The distributions used in the combined fit are multi-dimensional distributions of the angular
observables. With all four decay angles, in addition to the cos θW observable, one would
need five-dimensional distributions. Filling a five-dimensional distribution leads to poor
statistics for the single bins and does not appear to be a convenient choice. It was therefore
decided to move to three-dimensional distributions, using only the angles which describe the
leptonic decay cos θ∗l and φ∗

l , together with cos θW . This choice is also supported by the fact
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l and φ∗,T

l , respectively.
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that these angles are not affected by the two-fold ambiguity, while the remaining, unused
angles cos θ∗h and φ∗

h are.
A Monte Carlo template of the three-dimensional distribution has been created for

30 fb−1 of luminosity. As for the angular fit of the polarization only, the results have then
been propagated to higher luminosities, rescaling the original distributions accordingly.

The “data” are created from the Monte Carlo template, reweighting the events for anoma-
lous values of the TGCs and the desired polarizations. The fit shows slightly different per-
formances for different values of the couplings. Slightly better performances are obtained
for values of the couplings far from the SM tree-level expectations. Therefore, the fit was
optimized for TGCs coincident with the SM tree-level values, since this option gives the
most conservative estimate of the fit uncertainties.

A Poissonian random variation of the content of the 3D-bins of the data distributions is
applied, in order to assure statistical independence from the Monte Carlo template sample.

When fitting the template distributions to the data, two weights are applied to each
event of the template. One weight is a function of the TGCs (cf. Eq. 21) and one of the
polarization (Sec. 4.1). Since the correlation between the TGCs and the polarization of the
incoming beams is negligible, the weights factorize as follows:

weight = R(∆gZ
1 , ∆κγ , ∆λγ) ∗ weight(Pe+ , Pe−), (25)

where the function R was already introduced in Eq. 21 and Pe± are the beam polariza-
tions. No R weight has been associated to the background events. The weight that expresses
the dependence on the polarization was already discussed in Sec. 4.1.

The choice of the binning of the three-dimensional distributions is crucial. The polar-
ization is mainly sensitive to the total cross section information, i.e. to the normalization of
the distributions, as clearly shown in Fig. 14. A finer binning leads to a higher sensitivity to
the shape of the distributions and in general increases the sensitivity to the TGCs, though
decreasing the statistics in each bin.

The procedure applied in order to estimate the error of the fit takes into account both
the precision and the statistical issues. The fit is repeated several times, each time using a
different “data” sample. The different “data” samples were obtained from the same simu-
lated distribution but with a different Poissonian variation, similar to what was done for the
angular fit of the polarization only. A too fine binning, leading to poor statistics in most
of the bins of the 3D angular distributions, causes the fit to not converge at all or to give
non-Gaussian or off-centered distributions of the parameters. An example of a fit suffering
from a statistical issue, due to the choice of a too fine binning for the considered luminosity,
is shown in Fig. 23 (left). The distribution of the measured positron polarization is clearly
off-center with respect to the expected value (60) and it is non-Gaussian. The right distri-
bution in the same Figure shows the outcome of a correct fit: the distribution of the fitted
parameter is Gaussian and centered around the expected value.

The fit has been repeated both as a log-likelihood minimization and as a χ2 minimization.
The first option is more stable in the low-statistics case, allowing a finer binning. The second
technique has been used in order to check the goodness of the fit implementation, via the
resulting χ2 distribution, which has to be consistent with the degrees of freedom of the
fit. This is possible since the performance of the fit at sufficiently high luminosities, where
the χ2 minimization is not dramatically affected by statistical issues, is similar for χ2 and
log-likelihood.
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Figure 23: The left distribution shows an example of a fit suffering from too low statistics
due to the choice of a too fine binning for the considered luminosity. The distribution of the
measured positron polarization is clearly off-center with respect to the expected value (60)
and non-Gaussian. On the right the same distribution is shown for a proper choice of the
binning.

The χ2 function is defined as:

χ2 =
∑

++,−−,+−,−+

∑

bins

(NMC
i (Pe+ , Pe− , TGCs) − NDATA

i )2

NDATA
i

, (26)

where NMC
i (Pe+ , Pe− , TGCs) is the content of the i-th bin of the Monte Carlo template,

weighted as a function of polarization and TGCs, and NDATA
i is the content of the cor-

responding bin for the “data” distribution. The sum
∑

++,−−,+−,−+ accounts for the fact
that four different “data” samples are used, corresponding to the different helicity sets, as
for the previous measurements.

The log-likelihood function is analogously defined as:

L =
∑

++,−−,+−,−+

∑

bins

(NDATA
i log NMC

i (Pe+ , Pe− , TGCs) − NMC
i (Pe+ , Pe− , TGCs)). (27)

Where not otherwise specified, the results reported in the following are always meant as
results of the log-likelihood fit.

The optimum binning chosen is: 10 bins for the cos θW distribution and 5 bins for each
decay angle distribution. At high luminosities it is possible to move to a finer binning.
Starting at a high luminosity of about 500 fb−1, the log-likelihood fit is stable also using
a binning of 20, 10 ,10 for the cos θW , cos θ∗l and φ∗

l distributions, respectively. The finer
binning does not affect significantly the polarization measurement, as already explained,
and no improvement can be observed for the measurement of gZ

1 and κγ . The sensitivity to
λγ is the only one affected and is improved by a factor two. In Tab. 8 the results of the fit
for the two different binnings are compared for a total luminosity of 500 fb−1.

Cross-checks on the fit method have been performed using the χ2 minimization and a
Gaussian smearing of the data instead of the Poissonian one. In fact, the χ2 is expected to
follow a regular behavior only with Gaussian errors. The difference is generally negligible,
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but due to the presence of low-statistics bins it is appropriate to use the Gaussian smearing to
check the regular behavior of the minimization. The χ2 and the fit probability distributions
obtained are shown in the upper panels of Fig. 24 for a total luminosity of 500 fb−1 and a
10-5-5 binning. The χ2 distribution should follow the behavior expected for 995 degrees of
freedom. It was obtained, in fact, using 10 · 5 · 5 = 250 bins for each of the four data sets,
which give 1000 bins in total. Since there are 5 free parameters in the fit, the absolute values
of the two beam polarizations and the three couplings, the degrees of freedom are 995.

It is not possible to fit the χ2 distribution with an analytical expression of the χ2 function
directly. In fact, the Γ functions entering the analytical expression diverge for such a high
number of degrees of freedom. In any case the χ2 function can be well approximated with
a two-parameter Gaussian, constraining the width of the Gaussian to the square root of
its mean value. Such a fit gives 1021 measured degrees of freedom, a value slightly higher
than the expected one. This is mirrored by the fit probability distribution, which peaks at
zero, while it is expected to be homogeneously distributed over the whole range [0,1]. The
reason for such a behavior is due to the limited statistics used to produce the Monte Carlo
sample (30 fb−1). Though the number of events is scaled, when propagating the results to
higher luminosities, there is still an uncertainty introduced by the low-statistics bins. These
bins are affected by fluctuations, when the Monte Carlo 3D template distribution is filled
with 30 fb−1 of events. These fluctuations are directly propagated to higher luminosities,
since higher luminosities are obtained reweighting the events and not increasing the number
of events. This effect would be canceled by producing a Monte Carlo sample for higher
luminosities. A detailed explanation about this topic can be found in [24]. Since a larger
Monte Carlo sample was not available, alternatively it was possible to balance the χ2 by
adding an error also for the Monte Carlo in the χ2 function. Since the error is related to
the initial number of events, not to the rescaled number of events, the error on the Monte
Carlo enters the χ2 definition as a simple rescaling. Eq. 26 becomes:

χ2 =
∑

++,−−,+−,−+

∑

bins

(NMC
i (Pe+ , Pe− , TGCs) − NDATA

i )2

NDATA
i · 1.025

, (28)

where the value used to rescale the error in the denominator, 1.025, has been obtained
empirically. The χ2 and the fit probability distributions obtained after this change, are
shown in the lower panels of Fig. 24. The fit of the χ2 distribution returns the expected
number of degrees of freedom and the fit probability distribution is flat. The resulting
distributions of the fit parameters are not affected by the χ2 redefinition. For consistency,
the likelihood function was rescaled by the same factor, though the impact on the error of
the measured fit parameters for such a tiny factor is negligible.

6.5 Results

In Fig. 25 the precision on the polarization achieved using the simultaneous fit for the TGCs
is compared to the results obtained with the angular fit method of the polarization alone.
The total luminosity is shared equally between the four polarization sets ++, +−, −+ and
−−. The graphs clearly show that there is no loss in the sensitivity to the polarization,
when also fitting simultaneously the TGCs.

Fig. 26 shows the precision obtained for the TGCs. The precision is expressed as an
absolute uncertainty. The results shown on the left (right) have been obtained with a binning
of respectively 10 (20), 5 (10) and 5 (10) bins for the cos θW , cos θ∗l and φ∗

l distributions.
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Figure 24: The upper panels show the χ2 distribution (left) and the fit probability (right)
distributions, obtained for an integrated luminosity of 500 fb−1 with a simultaneous χ2

fit of TGCs and polarization. In the lower panels the same distributions are reproduced
increasing the error which enters the χ2 definition in order to account for the limited Monte
Carlo statistics (Eq. 28).
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Figure 25: The precision on the polarization achieved by the simultaneous fit with the TGCs
is compared to the results obtained with the angular fit method of the polarization alone.
The graph on the left (right) refers to a positron polarization of 60% (30%).
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Figure 26: Absolute uncertainty on the TGCs obtained with the simultaneous fit of the
TGCs the polarization of the beam. The upper (lower) distributions refer to a positron
polarization of 60% (30%). The results shown on the left (right) have been obtained with
a binning of respectively 10 (20), 5 (10) and 5 (10) bins for the cos θW , cos θ∗l and φ∗

l

distributions. The fit performed with the finest binning is stable only at high luminosities
of more than 500 fb−1.

The fit performed with the finest binning is stable only at high luminosities of more than
500 fb−1.

The results for an integrated luminosity of 500 fb−1 are summarized in Tab. 8, comparing
the two different binnings, while the correlations between the measured fit parameters are
reported in Tab. 9. The correlation between the electron and the positron polarizations and
between the polarizations and the TGCs are small. The correlations between the couplings
are higher, but acceptable. As already anticipated, only the uncertainty on the coupling λγ

is affected in a non-negligible way by the binning, improving by about a factor 2 when the
finest binning is employed.

The precision achievable for an integrated luminosity of 500 fb−1 on the couplings is
better than 10−3 and could improve the current limits on the couplings by one order of
magnitude.
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Parameter bin 20-10-10 bin 10-5-5

60% Pe+

∆Pe+ % 0.13 0.14
∆Pe− % 0.08 0.09

∆gZ
1 · 10−04 5.9 7.3

∆κγ · 10−04 6.2 7.4
∆λγ · 10−04 6.9 15.3

30% Pe+

∆Pe+ % 0.33 0.34
∆Pe− % 0.08 0.08

∆gZ
1 · 10−04 6.1 7.6

∆κγ · 10−04 6.4 7.7
∆λγ · 10−04 7.2 15.5

Table 8: Summary of the results obtained with the simultaneous fit of polarization and
TGCS for a total luminosity of 500 fb−1 and for two different choices of the binning. A
binning of 10-5-5 (20-10-10) is intended as respectively 20 (10), 10 (5) and 10 (5) bins for
the cos θW , cos θ∗l and φ∗

l distributions.

Parameters 60% Pe+ 30% Pe+

Pe−/Pe+ 13.3 -2.7
Pe−/gZ

1 -0.8 9.1
Pe−/κγ -12.8 -15.3
Pe−/λγ 4.3 -6.1
Pe+/gZ

1 2.8 0.2
Pe+/κγ -7.4 -9.5
Pe+/λγ -6.3 -2.5
gZ
1 /κγ 70.2 63.4

gZ
1 /λγ 47.1 47.7

λγ/κγ 47.2 35.4

Table 9: Correlations between the fit parameters obtained with the angular fit of polarization
and TGCs. The results for both the options of 60% and 30% positron polarization are
reported.



7 Systematics

In this section the main sources of systematics that might affect the polarization and the
TGCs measurements at the future ILC are investigated. In particular, the assumption made
so far that reversing the sign of the polarization does not affect its absolute value is studied
in detail.

7.0.1 Efficiency

The measurements implemented make use of non-normalized distributions, therefore a cor-
rect evaluation of the selection efficiency is a key factor. At LEP [25] uncertainties on the
selection efficiencies of the order of ∼ 0.1% have been obtained, for the semileptonic decays
of the W -pairs. In order to be conservative, an error of 0.2% on the selection efficiency of
signal and tau-signal has been considered (note that the statistical error on the selection
efficiencies in Tab. 3 refers to just 20 fb−1 of statistics. For the higher considered luminosi-
ties, in particular for a total luminosity of 500 fb−1, the statistical error on the selection
efficiency is negligible and is expected to be limited by systematic effects). Uncertainties
on the selection efficiency of the background of 1% and 5% have been considered. These
uncertainty have been propagated as a global rescaling of the background. The case of an
error of 0.5% on the selection efficiency of the signal and of the tau-signal has also been
considered.

The impact on the measurement of polarization and TGCs is summarized in Tables 10
and 11, respectively for the low and high positron polarization options. If the selection effi-
ciency of the signal can be controlled with a precision of at least 0.2% the measurements are
robust with regard to this source of systematics. Uncertainties of the order of 0.5% would
limit the statistical precision on the TGCs at high luminosities, though at the 10−3 level,
which would still be one order of magnitude better than the limits obtained at LEP. The
measurement of the polarization is found to be reasonably robust with regard to this source
of systematics. Even with the most conservative assumtpions the propagation of the uncer-
tainty to the measurement of the polarization does not exceed the statistical uncertainty for
an integrated luminosity of 500 fb−1.

7.0.2 Integrated Luminosity

A relative accuracy better than 10−3 on the integrated luminosity is needed at the ILC in
order to achieve the physics goals [1]. An error of the order of 10−3 was achieved in prelim-
inary simulation studies using Bhabha events [26]. Some of the uncertainties contributing
to this error could still be improved, like the large uncertainty coming from the two-photon
background, that can be reduced correcting for it and instead using the uncertainty from
higher order simulations as a true source of systematics on the luminosity measurement [26].

The biggest impact on the polarization and TGCs measurement coming from this source
of systematic error is obtained in case it influences the four polarization sets ++, +−, −+
and −− differently, namely increasing the integrated luminosity of some samples with re-
spect to the nominal value, while reducing it for others. Using fast helicity flipping also
for the positron beam, this eventuality can most probably be warded off. The maximum
impact of a 10−3 error on the integrated luminosity to the polarization and TGCs mea-
surements is shown in Tab. 12. It is found that this source of systematics does not limit
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Parameter Blondel Angular no TGCs Angular with TGCs
0.2% signal 1% background

∆Pe+ 0.03% 0.01% 0.01%
∆Pe− 0.02% 0.01% 0.01%
∆gZ

1 - - 0.0006
∆κγ - - 0.0007
∆λγ - - 0.00002

0.2% signal 5% background
∆Pe+ 0.08% 0.05% 0.05%
∆Pe− 0.07% 0.05% 0.05%
∆gZ

1 - - 0.001
∆κγ - - 0.001
∆λγ - - 0.0007

0.5% signal 1% background
∆Pe+ 0.04% 0.01% 0.01%
∆Pe− 0.03% 0.01% 0.01%
∆gZ

1 - - 0.001
∆κγ - - 0.001
∆λγ - - 0.0004

0.5% signal 5% background
∆Pe+ 0.08% 0.05% 0.05%
∆Pe− 0.07% 0.05% 0.06%
∆gZ

1 - - 0.002
∆κγ - - 0.002
∆λγ - - 0.0008

Table 10: Summary of the systematics due to the uncertainties on the selection efficiencies,
for the low positron polarization option of 30%. The impact on the polarization and TGCs
measurement is shown, both for the Blondel technique and for the angular fit method.



Parameter Blondel Angular no TGCs Angular with TGCs
0.2% signal 1% background

∆Pe+ 0.02% 0.01% 0.01%
∆Pe− 0.03% 0.01% 0.01%
∆gZ

1 - - 0.0006
∆κγ - - 0.0006
∆λγ - - 0.0002

0.2% signal 5% background
∆Pe+ 0.08% 0.05% 0.05%
∆Pe− 0.07% 0.05% 0.05%
∆gZ

1 - - 0.001
∆κγ - - 0.002
∆λγ - - 0.0006

0.5% signal 1% background
∆Pe+ 0.03% 0.01% 0.01%
∆Pe− 0.03% 0.01% 0.01%
∆gZ

1 - - 0.001
∆κγ - - 0.001
∆λγ - - 0.0002

0.5% signal 5% background
∆Pe+ 0.08% 0.05% 0.05%
∆Pe− 0.07% 0.05% 0.05%
∆gZ

1 - - 0.002
∆κγ - - 0.002
∆λγ - - 0.0008

Table 11: Summary of the systematics from the selection efficiencies, for the high positron
polarization option of 60%. The impact on the polarization and TGCs measurement is
shown, both for the Blondel technique and for the angular fit method.



Parameter Blondel Angular no TGCs Angular with TGCs
60% e+ polarization

∆Pe+ 0.1% 0.08% 0.07%
∆Pe− 0.04% 0.02% 0.02%

∆gZ
1 · 10−04 - - 0.0002

∆κγ · 10−04 - - 0.0002
∆λγ · 10−04 - - 0.0002

30% e+ polarization
∆Pe+ 0.3% 0.2% 0.2%
∆Pe− 0.08% 0.03% 0.02%

∆gZ
1 · 10−04 - - 0.0002

∆κγ · 10−04 - - 0.0002
∆λγ · 10−04 - - 0.0001

Table 12: Maximum impact of the luminosity uncertainty on the measurement of polariza-
tion and TGCs. An error of 10−3 on the integrated luminosity was assumed.

30% Pe+ 60% Pe+

∆P+

e+/P+

e+% 8.04 3.87

∆P−
e+/P−

e+% 4.06 0.94

∆P+
e−/P+

e−% 0.44 0.34

∆P−
e−/P−

e−% 4.04 3.22

corr P+
e+ P+

e−% 97.8 96.9

corr P+
e+ P−

e−% 99.7 99.6

corr P−
e+ P+

e−% 95.8 95.7

corr P−
e+ P−

e−% 99.2 98.6

Table 13: Summary of the results obtained with the angular fit method, without making the
assumption that the absolute value of the polarization remains unchanged, when flipping its
sign. The total luminosity of 500 fb−1 is equally shared between the four polarization sets.

significantly the statistical precision obtained for an integrated luminosity of 500 fb−1, both
for the polarization and the TGCs measurements.

7.0.3 Assumptions on the Polarization

So far it was assumed that the left-handed and the right-handed states of the polarizations
have the same magnitude. In order to make realistic estimates of the precisions achievable
at the ILC this constraint needs to be checked. This assumption is in principle not necessary
in the angular fit method, unlike the Blondel scheme. The fit of the polarizations can be
executed using two different parameters for the different signs of the polarizations. However,
this leads to a dramatic worsening of the statistical precision. The results obtained for a
total luminosity of 500 fb−1 are summarized in Tab. 13. The luminosity is assumed to be
equally shared between the four polarization sets. The precision obtained is well above the
desired 0.2% and the correlation between the fit parameters is very high.

It is possible to repeat the measurement with different assumptions, taking into account
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the additional information given by the polarimeters. This possibility has been addressed
for the most precise technique implemented, the angular fit method, both with and without
additional measurement of the TGCs.

At the ILC, the polarization will be measured by the polarimeters with an expected
uncertainty of ∼ ∆P/P = 0.25% [27]. Preliminary spin tracking studies, based on the ILC
RDR lattice and beam parameter set, show that the depolarization between the polarimeters
and the IP is the same for the two helicity states of the same beam, with negligible residual
differencesa. Therefore, the 4 average luminosity-weighted polarizations at the IP P +

e+ , P−
e+ ,

P+

e− and P−
e− can be constrained as follows:

P+ =
P+

e+ + P−
e+

2
,

ε+ =
P+

e+ − P−
e+

2
,

P− =
P+

e− + P−
e−

2
,

ε− =
P+

e− − P−
e−

2
, (29)

where P−
e+ (P−

e−) and P+
e+ (P+

e−) are the magnitudes of the positron (electron) polar-
ization in the left-handed and in the right-handed state, respectively, as measured by the
polarimeters.

When performing the angular fit, one free parameter for the polarization of each beam
is used, par+ for the positron beam and par− for the electron beam. In the data samples
where the positron is right-handed, the positron polarization is fitted with:

par+ + ε+, (30)

while the left-handed state is fitted with:

−par+ + ε+. (31)

The same equations hold for the polarization of the electron beam. The performance of
the fit is not affected by the value of ε±, what matters is the precision with which it can be
determined, which is:

σε± ≈ 0.0025P±√
2

, (32)

where P± was defined in Eq. 29. In order to take this uncertainty into account, for
each iteration of the fit ε± is smeared randomly using a Gaussian with a width of σε± .
This smearing is performed in addition to the Poissonian smearing of the data samples for
each iteration of the fit. For simplicity this version of the fit will be called in the following
realistic, as opposed to the idealistic fit, where |P−

e+ | = |P+

e+ | and |P−
e− | = |P+

e− |.
The two modalities of the fit are compared in Fig. 27 and Tab. 14. The dependence of

the obtained precisions on the total luminosity is shown in Fig. 27. For a total luminosity

aMoritz Beckmann, private communication.
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e+ pol ∆Pe+/Pe+% ∆Pe−/Pe−% corr%
Idealistic

30 0.34 0.08 6.6
60 0.14 0.08 3.4

Realistic
30 0.35 0.16 -3.7
60 0.17 0.16 -5.9

Table 14: Summary of the results obtained with the angular fit method for a total luminosity
of 500 fb−1. The idealistic case is compared with the realistic case, which takes into account
the polarimeters measurement, with a 0.25% uncertainty. The numbers refer to an electron
polarization of 80%. The results for both the options of 30% and 60% positron polarization
are shown.
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Figure 27: Summary of the results obtained with the angular fit method. The idealistic case
is compared with the realistic case, which takes into account the polarimeters measurement,
with a 0.25% uncertainty. The distribution on the left (right) refers to a positron polarization
of 60% (30%). The simultaneous fit of polarization and TGCs has been performed using the
log-likelihood technique and a binning of respectively 10, 5 and 5 bins for the cos θW , cos θ∗l
and φ∗

l distributions.

of 500 fb−1 the error is essentially dominated by the systematic uncertainty from the ± po-
larization differences, when considering the 60% positron polarization option. In the 30%
polarization option, improvements at higher luminosites can be obtained for the positron po-
larization, due to the lower statistical precision. Considering that this is a result realistically
achievable at the ILC, it is fully satisfactory. Precisions better than 0.2% can be obtained
on the electron polarization and on the positron polarization, if a high positron polarization
is considered. In the case of 30% positron polarization, the effect of the uncertainty on the
measurement of the positron polarization is negligible, since the polarization has a worse
statistical precision.

When moving from the idealistic to the realistic assumptions in the simultaneous mea-
surement of TGCs and polarization, no significant impact on the TGCs measurement is
found. The results are compared in Tab. 15. The sensitivity to the couplings is comparable
to the sensitivity obtained with the idealistic assumptions, while the sensitivity to the po-
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Parameter Realistic Idealistic

60% Pe+

∆Pe+ % 0.17 0.14
∆Pe− % 0.16 0.09

∆gZ
1 · 10−04 7.7 7.3

∆κγ · 10−04 7.9 7.4
∆λγ · 10−04 15.2 15.3

30% Pe+

∆Pe+ % 0.35 0.34
∆Pe− % 0.16 0.08

∆gZ
1 · 10−04 7.9 7.6

∆κγ · 10−04 7.6 7.7
∆λγ · 10−04 15.6 15.5

Table 15: Summary of the results obtained for the angular fit of polarization and TGCs for
a total luminosity of 500 fb−1 and with a binning of 10-5-5. The realistic and the idealistic
fits are compared.

larization is comparable to the one obtained with the realistic fit of the polarization only.
The correlations between couplings and polarization are summarized in Tab. 16 and are
acceptable.

8 Conclusions

Using the W -pair production it will be possible to measure the average luminosity-weighted
beam polarization at the ILC with high sensitivity, providing the polarimeters with an
absolute scale calibration.

Applying a modified Blondel scheme, a statistical uncertainty of 0.1% (0.2%) on the
e− (e+) polarization is obtained for an integrated luminosity of L = 500 fb−1, an electron
polarization of 80% and for a high positron polarization of 60%. When considering the lower
positron polarization option of 30%, the measurement precision reduces to 0.2% (0.5%) for
the e− (e+) polarization.

Using an angular fit technique, which compares the distribution of the production angle
of the W -pair to a Monte Carlo template, the same precision on the polarization is obtained
already for lower luminosities. This method requires a total luminosity of only 250 fb−1 for
the high positron polarization option, in order to achieve a statistical precision of the order
of 0.1% (0.2%) on the polarization of the electron (positron) beam. For the lower positron
polarization option a precision of 0.1% (0.34%) on the e− (e+) polarization is obtained for
an integrated luminosity of L = 500 fb−1.

Since the angular fit method require lower luminosities, it also allows a reduction of the
luminosity spent with both beams right-handed or left-handed. Such configurations of the
helicities are of low interest for most of the physics studies, since they suppress the s-channel
diagrams. With the angular fit method, only 20% of the total luminosity need to be spent
on these polarization configurations to obtain a statistical precision of the order of 0.1%
(0.2%) on the polarization of the e− (e+) beam for an integrated luminosity of 400 fb−1.
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Parameters 60% Pe+ 30% Pe+

Pe−/Pe+ -2.9 -1.7
Pe−/gZ

1 32.2 35.6
Pe−/κγ 28.6 26.0
Pe−/λγ 3.3 4.8
Pe+/gZ

1 20.3 7.2
Pe+/κγ 13.9 3.1
Pe+/λγ 3.1 -0.1
gZ
1 /κγ 72.2 70.1

gZ
1 /λγ 38.6 41.0

λγ/κγ 37.3 38.5

Table 16: Correlations between the fit parameters obtained with the angular fit of polar-
ization and TGCs, in both the options of 60% and 30% positron polarization. The results
shown were obtained with the realistic fit.

The angular fit method can be extended to a simultaneous fit of polarization and TGCs
without loosing sensitivity on the polarization. Three independent couplings in the vertices
WWγ and WWZ were fitted together with the polarization, obtaining an absolute statistical
precision better than 10−3 for an integrated luminosity of L = 500 fb−1.

A study of the possible systematic errors that might affect the performance of the mea-
surement has been performed. The major effect comes from differences in the values of the
left- and right-handed states of the polarizations, that need to be corrected using the po-
larimeters. Propagating the expected 0.25% uncertainty of the polarimeters, the impact on
the polarization and TGCs measurement has been evaluated. While no significant impact
on the TGCs measurement is found, the systematic uncertainty on the polarization is non-
negligible and dominates over the statistical precision at high luminosities. However, good
precisions are achieved even considering this source of systematics. For a high positron po-
larization of 60%, an uncertainty of 0.16% (0.17%) for the e− (e+) polarization is obtained
for an integrated luminosity of L = 500 fb−1. Assuming a lower positron polarization of
30%, the achieved precision is 0.16% (0.35%) for the e− (e+) polarization.
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