$H \rightarrow \tau^{+} \tau^{-}$branching ratio study at $\sqrt{s}=250 \mathrm{GeV}$ at the ILC with the ILD detector

Shin-ichi Kawada ${ }^{1, \uparrow}$, Keisuke Fujii ${ }^{2}$, Taikan Suehara ${ }^{3}$, Tohru Takahashi ${ }^{1}$, Tomohiko Tanabe ${ }^{3}$
February 2, 2013 (revised at March 22, 2013)

1: Advanced Sciences of Matter (AdSM), Hiroshima University, 1-3-1, Kagamiyama, HigashiHiroshima, Hiroshima, 739-8530, Japan
2: High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, Ibaraki, 305-0801, Japan
3: International Center for Elementary Particle Physics (ICEPP), The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
\dagger : s-kawada@huhep.org

Abstract

We evaluated the measurement accuracy of the branching ratio of $H \rightarrow \tau^{+} \tau^{-}$mode at $\sqrt{s}=250 \mathrm{GeV}$ at the ILC with the ILD detector. We assumed the Higgs mass $M_{H}=120$ GeV , branching ratio $\operatorname{Br}\left(H \rightarrow \tau^{+} \tau^{-}\right)=8.0 \%$, beam polarization $P\left(e^{-}, e^{+}\right)=(-0.8,+0.3)$, and integrated luminosity $\int L d t=250 \mathrm{fb}^{-1}$. We used the LOI samples as the Monte-Carlo samples. The evaluation was performed by the ILD full detector simulation. All Standard Model backgrounds were included in this study. We obtained the accuracy $\Delta(\sigma \cdot \mathrm{Br}) /(\sigma \cdot \mathrm{Br})=$ 3.5%. The scaled result to $M_{H}=125 \mathrm{GeV}$ is calculated to be 4.2%.

1 Introduction

A new Higgs-like particle was discovered by the ATLAS and the CMS experiments [1, 2]. One of the next important themes for particle physics is the investigation of that new particle, especially the mass generation mechanism.

One of the important properties of Higgs boson is its branching ratio. In the Standard Model (SM) of particle physics, the Yukawa coupling constant of matter fermions with the Higgs boson is proportional to the fermion mass. Besides, if there is new physics, the coupling constant may deviate from the SM prediction. Therefore, the branching ratio is a probe for new physics.

In this note, we focus on the branching ratio of $H \rightarrow \tau^{+} \tau^{-}$mode. We estimate the measurement accuracy of the $H \rightarrow \tau^{+} \tau^{-}$branching ratio at $\sqrt{s}=250 \mathrm{GeV}$ with the ILD full detector simulation.

2 Signal and Background

The main Higgs production process at $\sqrt{s}=250 \mathrm{GeV}$ is the Higgs-strahlung process $\left(e^{+} e^{-} \rightarrow Z H\right)$. There are three types of signal depending on the decay of the Z boson, as shown in Figure 1. In this note, we concentrate on (A) $Z \rightarrow l^{+} l^{-}$mode and (B) $Z \rightarrow q \bar{q}$ mode.

(A)

(B)

(C)

Figure 1: The diagrams of signal processes. (A): $Z \rightarrow l^{+} l^{-}$mode, (B): $Z \rightarrow q \bar{q}$ mode, (C): $Z \rightarrow \nu \bar{\nu}$ mode.

The $Z \rightarrow \nu \bar{\nu}$ mode has been found to contribute negligibly to the overall precision which is dominated by the $Z \rightarrow q \bar{q}$ mode. However, at higher center-of-mass energies, the $e^{+} e^{-} \rightarrow \nu \bar{\nu} H$ mode is expected to contribute substantially due to the increase in the cross section of $W W$ fusion process.

$2.1 Z \rightarrow l^{+} l^{-}$mode

In this mode, we only considered $Z \rightarrow e^{+} e^{-}$mode and $Z \rightarrow \mu^{+} \mu^{-}$mode as the signal process. The signal cross section of this mode is 1.9 fb . The dominant background processes are the four leptons processes ($e^{+} e^{-} \rightarrow$ eeee, ee $\mu \mu$, ee $\tau, \mu \mu \mu \mu, \mu \mu \tau \tau$, and $\tau \tau \tau \tau$). An example diagram is shown in Figure 2-(A). Other background processes are $e^{+} e^{-} \rightarrow Z H$ reactions where the Higgs boson does not decay to tau pairs.

$2.2 Z \rightarrow q \bar{q}$ mode

The signal cross section of this mode is 19.8 fb . The possible background processes for this mode are $q q q q$, qqll, and $q q l \nu$, which come from $e^{+} e^{-} \rightarrow W^{+} W^{-}$or $e^{+} e^{-} \rightarrow Z Z$ reactions. An example diagram is shown in Figure 2-(B). Other possible backgrounds are $e^{+} e^{-} \rightarrow Z H$ with $Z \rightarrow \tau^{+} \tau^{-}$ and $H \rightarrow q \bar{q}$. These processes have the same final state to the signal.

Figure 2: Example diagrams of possible background. (A): $\mu \mu \tau \tau$ background for $Z \rightarrow l^{+} l^{-}$mode, (B): $q q q q$ background for $Z \rightarrow q \bar{q}$ mode.

3 Simulation Conditions

We performed the detector simulation with Mokka [3], a Geant4-based [4] full simulation, with the ILD_00 detector model. TAUOLA [5] was used for the tau decay simulation. The ILD_00 detector model is consists of vertex detector, time projection chamber, electromagnetic calorimeter (ECAL), hadronic calorimeter (HCAL), and yoke.

We used the signal and background samples which were generated in the context of the Letter of Intent [6]. The assumed center-of-mass energy is 250 GeV . The effects of beamstrahlung and initial state radiation are included. All Monte-Carlo sample information (process ID, process, polarization, cross section, number of events, and luminosity) are summarized in Tables 6 (page 9) and 7 (page 10). We assumed the Higgs mass $M_{H}=120 \mathrm{GeV}$, branching ratio $\operatorname{Br}\left(H \rightarrow \tau^{+} \tau^{-}\right)=$ 8.0% as assumed by PYTHIA [8], integrated luminosity $\int L d t=250 \mathrm{fb}^{-1}$, and beam polarization $P\left(e^{+}, e^{-}\right)=(+0.3,-0.8)$. We also rescale the final result to the case of $M_{H}=125 \mathrm{GeV}$ and the $H \rightarrow \tau^{+} \tau^{-}$branching ratio which includes the NNLO corrections [9].

4 Event Reconstruction and Event Selection

4.1 $Z \rightarrow l^{+} l^{-}$mode

In this mode, we take the strategy of reconstructing the Z boson first, followed by the reconstruction of the tau pairs from the Higgs decay.

We applied lepton identification at first for dividing $Z \rightarrow e^{+} e^{-}$events and $Z \rightarrow \mu^{+} \mu^{-}$events by using the information of energy deposit in the calorimeter (E_{ECAL} and E_{HCAL}, where E_{ECAL} is the energy deposit in ECAL, E_{HCAL} is the energy deposit in HCAL, respectively) and track momentum $\left(P_{\text {track }}\right)$. Figures 3-6 are the plots of $E_{\mathrm{ECAL}} /\left(E_{\mathrm{ECAL}}+E_{\mathrm{HCAL}}\right)$ and $\left(E_{\mathrm{ECAL}}+E_{\mathrm{HCAL}}\right) / P_{\text {track }}$.

Figure 3: The plot of $E_{\mathrm{ECAL}} /\left(E_{\mathrm{ECAL}}+E_{\mathrm{HCAL}}\right)$ for the e in $e e H$ samples.

Figure 5: The plot of $\left(E_{\mathrm{ECAL}}+E_{\mathrm{HCAL}}\right) / P_{\text {track }}$ for the e in $e e H$ samples.

Figure 4: The plot of $E_{\mathrm{ECAL}} /\left(E_{\mathrm{ECAL}}+E_{\mathrm{HCAL}}\right)$ for the μ in $\mu \mu H$ samples.

Figure 6: The plot of $\left(E_{\mathrm{ECAL}}+E_{\mathrm{HCAL}}\right) / P_{\text {track }}$ for the μ in $\mu \mu H$ samples.

From these plots, we define the criteria for lepton identification. The criteria for electron identification $(e-\mathrm{ID})$ are: $E_{\mathrm{ECAL}} /\left(E_{\mathrm{ECAL}}+E_{\mathrm{HCAL}}\right)>0.92$ and $\left(E_{\mathrm{ECAL}}+E_{\mathrm{HCAL}}\right) / P_{\text {track }}>0.5$. The criteria for muon identification (μ-ID) are: $E_{\mathrm{ECAL}} /\left(E_{\mathrm{ECAL}}+E_{\mathrm{HCAL}}\right)<0.6$ and $\left(E_{\mathrm{ECAL}}+\right.$ $\left.E_{\mathrm{HCAL}}\right) / P_{\text {track }}<0.5$.

After the lepton identification, we applied selections to remove secondary leptons from tau decays. The strategy of this selection is to remove tracks which do not come from the interaction point (IP) by using the track energy $E_{\text {track }}$ and impact parameter in the transverse direction d_{0} and longitudinal direction z_{0} with respect to the beam axis. Figures 7-12 show the $\left|d_{0} / \sigma\left(d_{0}\right)\right|$, $\left|z_{0} / \sigma\left(z_{0}\right)\right|$, and $E_{\text {track }}$ plots which through the lepton identification. We defined the tau rejection cut for the objects through the e-ID: $\left|d_{0} / \sigma\left(d_{0}\right)\right|<50,\left|z_{0} / \sigma\left(z_{0}\right)\right|<5$, and $E_{\text {track }}>10 \mathrm{GeV}$, and for the objects through the μ-ID: $\left|d_{0} / \sigma\left(d_{0}\right)\right|<3,\left|z_{0} / \sigma\left(z_{0}\right)\right|<7$, and $E_{\text {track }}>20 \mathrm{GeV}$.

Figure 7: The plot of $\left|d_{0} / \sigma\left(d_{0}\right)\right|$ of e of $e e H$ Figure 8: The plot of $\left|z_{0} / \sigma\left(z_{0}\right)\right|$ of e of $e e H$ process. Blue, red, and black histograms show process. Blue, red, and black histograms show the e from $Z \rightarrow e^{+} e^{-}$, the e from $\tau \rightarrow e \nu \nu$, the e from $Z \rightarrow e^{+} e^{-}$, the e from $\tau \rightarrow e \nu \nu$, and the hadrons from τ decay, respectively. and the hadrons from τ decay, respectively.

Figure 9: The plot of $E_{\text {track }}$ of e of $e e H$ process. Figure 10: The plot of $\left|d_{0} / \sigma\left(d_{0}\right)\right|$ of μ of $\mu \mu H$ Blue, red, and black histograms show the e process. Blue, red, and black histograms show from $Z \rightarrow e^{+} e^{-}$, the e from $\tau \rightarrow e \nu \nu$, and the the μ from $Z \rightarrow \mu^{+} \mu^{-}$, the μ from $\tau \rightarrow \mu \nu \nu$, hadrons from τ decay, respectively. and the hadrons from τ decay, respectively.

Figure 11: The plot of $\left|z_{0} / \sigma\left(z_{0}\right)\right|$ of μ of $\mu \mu H$ Figure 12: The plot of $E_{\text {track }}$ of μ of $\mu \mu H$ proprocess. Blue, red, and black histograms show cess. Blue, red, and black histograms show the the μ from $Z \rightarrow \mu^{+} \mu^{-}$, the μ from $\tau \rightarrow \mu \nu \nu, \mu$ from $Z \rightarrow \mu^{+} \mu^{-}$, the μ from $\tau \rightarrow \mu \nu \nu$, and and the hadrons from τ decay, respectively. the hadrons from τ decay, respectively.

We applied the energy recovery procedure to correct for bremsstrahlung and final state radiation. In order to reconstruct the original Z boson, we have to use both the charged particles and the radiated photons. To achieve this, we defined the cone as shown in Figure 13. The fourmomenta of the neutral particles in the cone were combined with that of the lepton candidate. We defined the half-opening angle of the cone with $\cos \theta_{\text {cone }}=0.999$ and applied the recovery procedure to the lepton candidates. The results are shown in Figures 14 and 15.

Figure 13: The definition of the cone. Black arrow shows the lepton candidate. $\theta_{\text {cone }}$ is the angle of the cone.

Figure 14: The results of recovery for $Z \rightarrow$ Figure 15: The results of recovery for $Z \rightarrow$ $e^{+} e^{-}$mode. The horizontal axis shows the $\mu^{+} \mu^{-}$mode. The horizontal axis shows the M_{Z}. Black and red histograms show the re- M_{Z}. Black and red histograms show the results of without recovery and with recovery sults of without recovery and with recovery $\left(\cos \theta_{\text {cone }}=0.999\right)$, respectively. $\quad\left(\cos \theta_{\text {cone }}=0.999\right)$, respectively.

After that, we applied the tau finder to the remaining objects to reconstruct tau leptons. First of all, the objects which already used at Z boson reconstruction were rejected from tau reconstruction analysis. Then we search the highest energy track from the remaining objects, and combine the neighboring particles (which satisfies the angle with respect to the highest energy track less than 1.0 radian) with the combined mass less than 2 GeV . We regarded the combined object as a tau candidate. Then repeat these processes until there are no charged particles.

After finishing the event reconstruction, we applied the cuts for selecting signal, rejecting background. Before optimizing the cuts, we applied the preselection as follows for $Z \rightarrow e^{+} e^{-}$ mode: number of e^{+}and $e^{-}=1$, number of τ^{+}and $\tau^{-}=1$, and for $Z \rightarrow \mu^{+} \mu^{-}$mode: number of μ^{+}and $\mu^{-}=1$, number of τ^{+}and $\tau^{-}=1$.

We applied the following cuts for $Z \rightarrow e^{+} e^{-}$mode: number of tracks $\leq 8,115 \mathrm{GeV}<E_{\text {vis }}<230$ $\mathrm{GeV},\left|\cos \theta_{\text {miss }}\right|<0.99,81 \mathrm{GeV}<M_{Z}<113 \mathrm{GeV}, \cos \theta_{e^{-}}<0.92, \cos \theta_{e^{+}}>-0.92, E_{e^{-}}<90 \mathrm{GeV}$, $E_{e^{+}}<90 \mathrm{GeV}, \cos \theta_{\tau^{+} \tau^{-}}<-0.45, \cos \theta_{\tau^{-}}<0.92, \cos \theta_{\tau^{+}}>-0.92$, and $116 \mathrm{GeV}<M_{\text {recoil }}<142$ GeV , where $E_{\text {vis }}$ is the visible energy, $\theta_{\text {miss }}$ is the missing momentum angle with respect to beam axis, $\theta_{e^{-}\left(e^{+}\right)}$is the $e^{-}\left(e^{+}\right)$angle with respect to beam axis, $E_{e^{-}\left(e^{+}\right)}$is the $e^{-}\left(e^{+}\right)$energy, $\theta_{\tau^{+}}$的 the angle between τ^{+}and $\tau^{-}, \theta_{\tau^{-}\left(\tau^{+}\right)}$is the $\tau^{-}\left(\tau^{+}\right)$angle with respect to beam axis, and $M_{\text {recoil }}$ is the recoil mass, respectively. The histograms of all cut variables are shown in Figures $17-28$ (page 11-12). Table 1 shows the cut statistics of this mode. After the cuts, the $Z \rightarrow e^{+} e^{-}$signal events of 108.9 and background events of 76.0 remained. The statistical significance was calculated to be $S / \sqrt{S+B}=108.9 / \sqrt{108.9+76.0}=8.0 \sigma$.

We applied the following cuts for $Z \rightarrow \mu^{+} \mu^{-}$mode: number of tracks $\leq 8,115 \mathrm{GeV}<$ $E_{\text {vis }}<235 \mathrm{GeV},\left|\cos \theta_{\text {miss }}\right|<0.98,72 \mathrm{GeV}<M_{Z}<107 \mathrm{GeV}, E_{e^{-}}<90 \mathrm{GeV}, E_{e^{+}}<90 \mathrm{GeV}$, $\cos \theta_{\tau^{+} \tau^{-}}<-0.5$, and $118 \mathrm{GeV}<M_{\text {recoil }}<143 \mathrm{GeV}$. The histograms of all cut variables are shown in Figures 29-36 (page 13-14). Table 2 shows the cut statistics of this mode. For the $Z \rightarrow \mu^{+} \mu^{-}$ mode case, 131.2 signal events and 91.2 background events were remained. The significance was $S / \sqrt{S+B}=131.2 / \sqrt{131.2+91.2}=8.8 \sigma$.

Table 1: The cut statistics of $Z \rightarrow e^{+} e^{-}$mode.

	$e e H$	$\mu \mu H$	$\tau \tau H$	$Z H$ with	$e e \tau \tau$	other	other	signi.
	$H \rightarrow \tau \tau$	$H \rightarrow \tau \tau$	$H \rightarrow \tau \tau$	no τ		4 leptons	SM bkg	
No cut	228.3	211.1	214.6	7325	2.388×10^{5}	5.238×10^{5}	1.492×10^{10}	0.0019
preselection	171.3	0.155	1.532	47.05	1.338×10^{4}	3.215×10^{4}	1.023×10^{7}	0.053
\# of tracks	169.4	0.155	1.532	41.56	1.316×10^{4}	3.205×10^{4}	1.009×10^{7}	0.053
$E_{\text {vis }}$	162.3	0.155	0.912	38.36	1.068×10^{4}	1.039×10^{4}	4.761×10^{6}	0.074
$\cos \theta_{\text {miss }}$	160.6	0.155	0.912	38.03	8719	1906	5.155×10^{5}	0.22
M_{Z}	148.0	0	0.017	29.09	2408	501.2	1.299×10^{4}	1.2
$\cos \theta_{e^{-}\left(e^{+}\right)}$	133.9	0	0.009	25.40	1067	101.5	729.7	3.0
$E_{e}(e+)$	133.0	0	0.009	24.93	690.3	78.70	629.7	3.4
$\cos \theta_{\tau^{+} \tau^{-}}$	130.8	0	0	3.536	254.9	30.70	155.4	5.5
$\cos \theta_{\tau^{-}-\left(\tau^{+}\right)}$	123.4	0	0	3.074	212.1	9.161	3.817	6.6
$M_{\text {recoil }}$	108.9	0	0	2.474	72.35	1.134	0.034	8.0

Table 2: The cut statistics of $Z \rightarrow \mu^{+} \mu^{-}$mode.

	$\mu \mu H$	$e e H$	$\tau \tau H$	$Z H$ with	$\mu \mu \tau \tau$	other	other	signi.
	$H \rightarrow \tau \tau$	$H \rightarrow \tau \tau$	$H \rightarrow \tau \tau$	no τ		4 leptons	SM bkg	
No cut	211.1	228.3	214.6	7325	3513	7.591×10^{6}	1.492×10^{10}	0.0017
preselection	168.5	0	0.155	43.01	1698	7546	7732	1.3
\# of tracks	167.4	0	0.155	39.65	1684	7537	7400	1.3
$E_{\text {vis }}$	162.9	0	0.155	37.40	1586	2285	3713	1.9
$\cos \theta_{\text {miss }}$	158.6	0	0.155	36.51	1386	227.5	55.48	3.7
M_{Z}	153.2	0	0	32.84	1038	55.28	42.54	4.2
$E_{e^{-}}\left(e^{+}\right)$	153.2	0	0	32.70	738.6	42.41	36.72	4.8
$\cos \theta_{\tau^{+} \tau^{-}}$	146.3	0	0	3.638	259.4	20.19	0.756	7.1
$M_{\text {recoil }}$	131.2	0	0	2.875	82.36	5.311	0.301	8.8

4.2 $Z \rightarrow q \bar{q}$ mode

In this mode, the tau pairs are reconstructed first, followed by the di-jet reconstruction of the Z decay.

At first in this mode, we applied the tau finder to all objects to reconstruct tau leptons. In this analysis, we search the highest energy track and combine the neighboring particles, which satisfy $\cos \theta_{\text {cone }}>0.98$, with the combined mass less than 2 GeV . We regarded the combined object as a tau candidate. Then we applied the selection cuts as following: $E_{\text {tau candidate }}>3 \mathrm{GeV}$, $E_{\text {cone }}<0.1 E_{\text {tau candidate }}$ with $\cos \theta_{\text {cone }}=0.9$, and rejecting 3-prong with neutral particles events. These selection cuts were tuned for minimizing misidentification of part of quark jets as tau jets. The survived tau candidate regarded as a tau jet. After the selection cuts, we applied the charge recovery to obtain better efficiency. The charged particles in tau jet which have the energy less than 2 GeV are detached one by one from smallest energy from the tau jet until satisfying the conditions as following: the charge of tau jet is +1 or -1 , and the number of track(s) in tau jet is 1 or 3 . The tau jet after detaching is rejected if it does not satisfy the above conditions. After the selection cuts and detaching, we repeat the above processes until there are no charged particles which have the energy greater than 2 GeV .

After the tau reconstruction, we applied the collinear approximation [10] to reconstruct $M_{\tau^{+} \tau^{-}}$. In this approximation, we assumed that the visible decay products of tau and the neutrino(s) from tau is collinear, and the contribution of missing transverse momentum is only comes from the neutrino(s) of tau decay. The invariant mass of the tau pair with the collinear approximation shown in Figure 16.

Figure 16: The plot of $M_{\text {colapp }}$ in the unit of GeV , the invariant mass of di-tau with collinear approximation. Blue histogram shows the signal process $Z H \rightarrow q q \tau \tau$.

After that, we applied the Durham jet clustering method [11] with two jets for the remaining objects for the reconstruction of the Z boson.

After the tau and Z reconstruction, we applied the cuts to select signal process. Before optimizing cuts, we applied the preselection as follows: number of quark jets $=2$, number of τ^{+} and $\tau^{-}=1$, number of tracks in $\tau \leq 3$, and the events which have the tracks in both $\tau=3$ were rejected (double 3 -prong cut). We applied the following cuts to reject the background: $9 \leq$ number of tracks $<50,110 \mathrm{GeV}<E_{\text {vis }}<235 \mathrm{GeV},\left|\cos \theta_{\text {miss }}\right|<0.98,77 \mathrm{GeV}<M_{Z}<135 \mathrm{GeV}$, $80 \mathrm{GeV}<E_{Z}<135 \mathrm{GeV}, \cos \theta_{\tau^{+} \tau^{-}}<-0.5, \log _{10}\left|d_{0} / \sigma\left(d_{0}\right)\right|\left(\tau^{+}\right)+\log _{10}\left|d_{0} / \sigma\left(d_{0}\right)\right|\left(\tau^{-}\right)>-0.7$, $\log _{10}\left|z_{0} / \sigma\left(z_{0}\right)\right|\left(\tau^{+}\right)+\log _{10}\left|z_{0} / \sigma\left(z_{0}\right)\right|\left(\tau^{-}\right)>-0.1, M_{\tau^{+} \tau^{-}}<115 \mathrm{GeV}, E_{\tau^{+} \tau^{-}}<125 \mathrm{GeV}, 100$ $\mathrm{GeV}<M_{\text {colapp }}<170 \mathrm{GeV}, 100 \mathrm{GeV}<E_{\text {colapp }}<280 \mathrm{GeV}$, and $112 \mathrm{GeV}<M_{\text {recoil }}<160 \mathrm{GeV}$, where $M_{\tau^{+} \tau^{-}}$and $E_{\tau^{+} \tau^{-}}$is the invariant mass and energy without using collinear approximation, $M_{\text {colapp }}$ and $E_{\text {colapp }}$ is the invariant mass and energy with collinear approximation, respec-
tively. The histograms of all cut variables are shown in Figures 37-49 (page 14-16). Table 3 shows the cut statistics of this mode. After the cuts, the signal events and background events were remained 1026 and 554.4. The statistical significance of $Z \rightarrow q \bar{q}$ mode is calculated to be $S / \sqrt{S+B}=1026 / \sqrt{1026+554.4}=25.8 \sigma$.

Table 3: The cut statistics of $Z \rightarrow q \bar{q}$ mode.

	$\begin{gathered} q q H \\ H \xrightarrow{\rightarrow} \tau \tau \end{gathered}$	$\begin{gathered} Z H \text { with } \\ \text { no } \tau \\ \hline \end{gathered}$	$l l H$	$\tau \tau H$	$q q q q$	qqll	$q q \tau \tau$	$q q l \nu$	$q q \tau \nu$	other SM bkg	signi.
No cut	4233	4.829×10^{4}	5377	2596	4.038×10^{6}	3.563×10^{5}	4.169×10^{4}	2.788×10^{6}	1.326×10^{6}	1.494×10^{10}	0.035
preselection	1647	578.8	2761	765.4	1.230×10^{4}	6.378×10^{4}	1.161×10^{4}	1.249×10^{5}	4.948×10^{4}	2.570×10^{7}	0.32
\# of tracks	1644	549.8	2680	765.4	1.230×10^{4}	6.059×10^{4}	1.146×10^{4}	1.214×10^{5}	4.806×10^{4}	5.190×10^{5}	1.9
$E_{\text {vis }}$	1607	492.3	1015	744.2	4443	2.106×10^{4}	1.107×10^{4}	1.192×10^{5}	4.693×10^{4}	2.383×10^{5}	2.4
$\cos \theta_{\text {miss }}$	1572	474.7	860.5	725.1	2127	8315	1.021×10^{4}	1.171×10^{5}	4.415×10^{4}	5939	3.6
M_{Z}	1440	376.1	791.3	682.8	778.6	4987	8674	8189	3288	997.3	8.3
E_{Z}	1429	352.0	782.7	528.7	505.0	4797	7857	7703	3061	609.9	8.6
$\cos \theta_{\tau+}{ }_{\tau}{ }^{-}$	1386	46.28	442.2	255.6	191.4	1468	2001	2831	1154	475.6	13.7
$d_{0}{ }^{\tau} \operatorname{sig}^{\tau}$	1338	30.29	235.1	244.3	131.4	854.9	1928	1786	1044	248.1	15.1
z_{0} sig	1287	19.54	105.0	234.7	81.77	408.2	1845	909.9	883.4	244.6	16.6
$M_{\tau}+{ }_{\tau}{ }^{-}$	1286	19.39	103.2	234.7	72.05	349.1	1837	883.5	883.4	243.9	16.7
$E_{\tau^{+}+{ }_{\tau}{ }^{\tau}}$	1282	19.39	103.0	234.7	72.05	324.7	1836	873.2	883.4	243.9	16.7
$M_{\text {colapp }}$	1065	3.074	18.76	47.94	10.28	72.83	616.9	150.8	137.0	0.746	23.1
$E_{\text {colapp }}$	1062	2.454	18.01	46.72	10.28	71.27	612.1	93.05	93.52	0.454	23.7
$M_{\text {recoil }}$	1026	2.144	14.54	21.24	9.938	57.07	366.3	39.64	43.31	0.161	25.8

5 Summary

We evaluated the measurement accuracy of the branching ratio of the $H \rightarrow \tau^{+} \tau^{-}$mode at $\sqrt{s}=$ 250 GeV at the ILC with ILD_00 detector model. We assumed $M_{H}=120 \mathrm{GeV}, \operatorname{Br}\left(H \rightarrow \tau^{+} \tau^{-}\right)=$ $8.0 \%, \int L d t=250 \mathrm{fb}^{-1}$, and the polarization $P\left(e^{+}, e^{-}\right)=(+0.3,-0.8)$. The obtained values were summarized in Table 4.

Table 4: The analysis results of $\sqrt{s}=250 \mathrm{GeV}$.

mode	$Z \rightarrow e^{+} e^{-}$	$Z \rightarrow \mu^{+} \mu^{-}$	$Z \rightarrow q \bar{q}$
significance	8.0σ	8.8σ	25.8σ

From these results, the combined significance was calculated to be $\sqrt{8.0^{2}+8.8^{2}+25.8^{2}}=$ 28.4σ. Therefore, the measurement accuracy $\Delta(\sigma \cdot \mathrm{Br}) /(\sigma \cdot \mathrm{Br})$ was calculated to be $\Delta(\sigma \cdot \mathrm{Br}) /(\sigma$. $\mathrm{Br})=1 / 28.4=3.5 \%$.

The results are extrapolated to the case of $M_{H}=125 \mathrm{GeV}$ by scaling the signal yields by the $e^{+} e^{-} \rightarrow Z H$ cross section and the branching ratio $\operatorname{Br}\left(H \rightarrow \tau^{+} \tau^{-}\right) \rightarrow 6.32 \%$ [9]. We assumed that the selection efficiencies the same. The results are summarized in Table 5.

Table 5: The results of the extrapolation to $M_{H}=125 \mathrm{GeV}$.

$Z \rightarrow e^{+} e^{-}$	$Z \rightarrow \mu^{+} \mu^{-}$	$Z \rightarrow q \bar{q}$	Combined	$\frac{\Delta(\sigma \cdot \mathrm{Br})}{\sigma \cdot \mathrm{Br}}$
6.8σ	7.4σ	21.9σ	24.1σ	4.2%

A Monte-Carlo Samples

Table 6: Monte-Carlo information which used in this analysis. From the left line, the process ID, process, beam polarization (ep for positrons, em for electrons), cross section in the unit of fb , number of Monte-Carlo events, integrated luminosity in the unit of fb^{-1}, are shown. This list continues to Table 7.

Table 7: Monte-Carlo information which used in this analysis. From the left line, the process ID, process, beam polarization (ep for positrons, em for electrons), cross section in the unit of fb , number of Monte-Carlo events, integrated luminosity in the unit of fb^{-1}, are shown. This list is series of Table 6.

21600 e1a_e1cc ep +0.0 em-1.0 $2692.032000 \quad 0.742934$ 21601 ela_elcc ep+0.0em-1.0 $14238+414238 \quad 0.999972$ 21603 e1a_e1cc ep +0.0 em $+1+014172141721$ 21616 ela_eldd ep +0.0 em-1.0 $305,228 \quad 3050.999253$ 21617 ela_e1dd ep +0.0 em-1.0 1207.7312070 .999396 21618 ela_e1dd ep+0.0em+1.0 $263.602 \quad 263 \quad 0.997716$ 21619 ela_eldd ep+0.0em+1.0 $1210.081210 \quad 0,999934$ 21604 e1a_ele1e1 ep+0.0em-1.0 $7311,2673110.999964$ 21605 ela_ele1e1 ep+0.0em-1.0 45047.7430470 .955587 21606 e1a_ele1e1 ep+0.0em+1.0 $7282,5672820.999923$ 21607 ela_e1e1e1 ep $+0.0 e_{m}+1.044999 .4439990 .977769$ 21608 e1a_e1e2e2 ep+0.0em-1.0 $7880+3978800.99995$ 21610 ela_ele2e2 ep $+0.0 \mathrm{em}-1+053812,4534120,992559$ 21611 e1a_e1e2e ep+0 21612 ela_ele3e3 ep $+0.0 \mathrm{~m}-1.013471$. 21613 e1a e1e3e3 ep+0.0em-1.0 96603.4 948030.981363 21614 e1a_e1e3e3 ep+0.0em+1.0 13459.7134590 .999948 21615 e1a_e1e3e3 ep+0.0em+1.0 96607956070.989649 21588 e1a_e1n2n2 ep+0.0em-1.0 52.072752 0.998604 21589 e1a_e1n2n2 ep+0.0em-1.0 21.8282210 .962058 21590 e1a_e1n2n2 ep+0.0em+1.0 33.307330 .990783 21591 e1a_e1n2n2 ep+0.0em+1.0 13.982 141.00129 21592 e1a_e1n3n3 ep+0.0em-1.0 52.0479520 .99908 21593 ela_e1n3n3 ep+0.0em-1.0 21.8319210 .961895 21594 ela_eln3n3 ep+0.0em+1.0 33.3573330 .989289 21595 e1a_e1n3n3 ep+0.0em +1.013 .9806141 .00139 21620 ela_elss ep $+0,0$ em-1.0 $\quad 305,28 \quad 305 \quad 0.999083$ 2162 ela_elss ep $+0 .+$ em-1.0 $1263+611203 .+39777$ 21623 ela_elss ep $+0 .+$ em $+1.01263 .32226310 .+998777$ 21596 e1a_eluu ep +0.0 em-1.0 2697.0726970 .999974 21597 e1a_e1uu ep+0.0em-1.0 14270.714270 0.99995 21598 ela_ eluu ep+0.0em+1.0 $2631.22 \quad 2631 \quad 0.999916$ 21599 ela_eluu ep +0.0 em $+1.014186 .314186 \quad 0.999979$ $21168 \mathrm{ele} 1 \mathrm{ep}-1$. $0 \mathrm{em}-1.01 .72542 \mathrm{e}+071250000.00144892$ 21169 e1e1 ep+1.0em-1.0 1,73374e+07 $22500 \quad 0.00129777$ 21170 e1e1 ep-1.0em $1.01 .72946 \mathrm{e}+07245000.00141663$ 21171 ele1 ep $+1.0 \mathrm{em}+1.01 .72517 \mathrm{e}+07250000.00144913$ 21472 ele1bb ep-1.0em-1.0 57, 2207572211000.01 21473 e1e1bb ep +1.0 em $-1.0106 .063100000 \quad 942.836$ 21474 ele1bb ep-1.0em+1.0 68.9777689781000 21475 ele1bb ep+1.0em+1.0 57.3099573101000 21464 eleldd ep-1.0em-1.0 $73,392172592989,098$ 21466 e1e1dd ep-1 0em+1.085.326184126985.935 21467 ele1dd ep+1.0em+1.0 73.442734421000 21452 ele1e1e1 ep-1.0em-1.0 942.4649220097 .8287 21453 ele1e1e1 ep+1.0em-1.0 995.5959140091 .8044 21454 elelele1 ep-1.*em +1.0 982.404 97800103.635 21456 e1e1e2e2 ep-1.0em-1.0 1073.64 100000 93. 1411 21457 ele1e2e2 ep $+1.0 \mathrm{em}-1.01106 .7199800 \quad 90.1772$ 21458 ele1e2e2 ep $-1.0 e \mathrm{~m}+1+01088.610000091 .8611$ 21459 e1e1e2e2 ep $+1.0 \mathrm{em}+1.0 \quad 1068.979900092 .6125$ 21460 e1e1e3e3 ep-1.0em-1.0 941.68598800 104. 918 21461 ele1e3e3 ep +1 . 0 em- 1.0 . 965.14597800101 .332 21462 e1e1e3e3 ep-1.0em+1.0 948.774 99000104.345 21463 ele1e3e3 ep +1.0 em +1.0942 .98498200104 .138 20612 ele1h ep-1.0em-1.0 0,644995 1000015504 20613 ele1h ep +1 .0em-1.0 17.8919178921000 .01 20614 ele1h ep-1.0em+1.0 11.2894 11289 999.965 20615 ele1h ep $+1.0 \mathrm{em}+1.0 \quad 0,6454771000015492.4$ 21468 elelss ep-1,0em-1.0 73.2531 73253 999,999 21470 e1e1ss ep-1. 0 m +1.0 25. 452965600767.674 21471 ele1ss ep +1 . 0 em +1.073 .15271752980 .862 $21173 \mathrm{e} 2 \mathrm{e} 2 \mathrm{ep}+1.0 \mathrm{em}-1.0$ 17077. 6990005 5.79707 $21174 \mathrm{e} 2 \mathrm{e} 2 \mathrm{ep}-1.0 \mathrm{em}+1.012859 .5 \quad 99400 \quad 7.72969$ 21493 e2e2bb ep +1 .0em-1.0 56.507156307 996.45 21494 e2e2bb ep-1.0em+1.0 29.579328779972 .94 21485 e2e2dd ep+1.0em-1.0 57.5377 575381000.01 21486 e2e2dd ep-1.0em+1.0 30.2016302021000 .01 21477 e2e2e2e2 ep+1.0em-1.0 11.4311 11431 999.991 21478 e2e2e2e2 ep-1.0em+1.0 7.23464 100001382.24 21481 e2e2e3e3 ep +1 .0em-1.0 $23.1405 \quad 23140999+978$ $21482 \mathrm{e} 2 \mathrm{e} 2 \mathrm{e} 3 \mathrm{e} 3 \mathrm{ep}-1.0 \mathrm{em}+1.014 .658514658999 .966$ 20617 e2e2h ep+1.0em-1.0 17.126 171261000 $20618 \mathrm{e} 2 \mathrm{e} 2 \mathrm{~h} \mathrm{ep}-1+0 \mathrm{em}+1+010,967110967$ 999,991 21489 e2e2ss ep +1 . 0 em-1.0 $57.6073 \quad 57607$ 999. 395 $21177 \mathrm{e}^{2} 2 \mathrm{e}$ ep $+1.0 \mathrm{M}-1.17102 .4980005 .77697$ 21178 e3e3 ep-1.0em +1.012852 .9999800 7.76478 21509 e3e3bb ep +1 . 0 em-1.0 56.135555535989303 21510 eЗe3bb ep-1.0em $+1.0 \quad 29.4194 \quad 29219 \quad 993.188$ 21501 e3e3dd ep $+1+0 \mathrm{em}-1.0 \quad 57.229556830993 .019$ 21502 e3e3dd ep-1.0em+1.0 $30.0379 \quad 29838993.345$ 21497 e3e3e3e3 ep+1.0em-1.0 11.4274 11427 999.965 21498 e3e3e3e3 ep-1.0em+1.0 7.21497 98001358.29 20621 e3e3h ep+1.0em-1.0 17.0988 170991000.01 20622 e3e3h ep-1.0em+1.0 10.9435 109441000.05 21505 e3e3ss ep+1.0em-1.0 57.354857155996 .516 21506 e3e3ss ep-1.0em+1.0 $30+050230050$ 999. 993 21229 nle1du ep ${ }^{2}+0$ em- $1.0 \quad 2467.16100000 \quad 40.5324$ 21230 n1e1du ep-1.0em+1.0 20.870120870 999.995

21216 n1e1e1n1 ep-1.0em-1.0 43.584143384 995.409 1217 n1e1e1n1 ep+1.0em-1.0 939.099 98800 105. 20 21219 nle1e1n1 ep +1 .0em $+1.0 \quad 43.6248 \quad 43625$ 1000 21220 n1ele2n2 ep-1.0em-1.0 28.82428424986 .123 21221 nle1e2n2 ep+1.0em-1.0 822.598000119 .149 21222 n1e1e2n2 ep-1.0em+1.0 7.09688 10000 1409.07 21224 n1e1e3n3 ep-1.0em-1.0 28.676928477993 .029 1225 nle1e3n3 ep+1.0em-1.0 823.72997800 118.72 21226 nle1e3n3 ep-1.0em+1.0 7,10283 10000 1407.89 21232 n 1 elsc ep-1.0em-1.0 86.1229861231000 21233 nle1sc ep $+1.0 \mathrm{Om}-1.02470 .3410000040 .4803$ 1234 nlelsc ep-1.0em+1.0 20.9005 20701990.455 1125 n1n1a ep +1.0 em -1.023969 .4238694 9.9582
 1138 1n1a ep 1 . 20 -1. 102114520119.998 21149 n11aaa ep +100 -1.0 691909692100013 2150 n 1 n 1 aàa ep -1 .0em +1.0 16, 064716110.022 1369 n1n1bb ep +1 . 0 em- 1.085 .7148857151000 21370 n1n1bb ep -1.0 em +1.025 .0179250181000 1321 n 1 n 1 cc ep+1.0em-1.0 81.319581319999 .994 1322 n 1 n 1 cc ep-1.0em+1.0 24.5259245261000 21361 n1n1dd ep+1.0em-1.0 87.9093 87909999.997 1362 n1m1dd ep-1.0em+1.0 25.5486255491000 .02 21353 n1n1e2e2 ep+1.0em-1.0 44.7068 42707 955.269 1354 n1n1e2e2 ep-1.0em+1.0 12.8466128471000 .03 21357 n1n1e3e3 ep+1.0em-1.0 44.4167 43417 977.493 21358 n1n1e3e3 ep-1.0em+1.0 12.7892 12789 999.98 $20593 \mathrm{n} 1 \mathrm{n} 1 \mathrm{~h} \mathrm{ep}+1.0 \mathrm{em}-1+0 \quad 60.8309608311000$ 213551010 1366 n 1 nss ep-1 $0 \mathrm{~m}+100254646 \quad 254651000$ 21317 n1m1uu ep+1.0em-1.0 81.284581084997 .533 21318 n1n1uu ep-1.0em+1.0 $24,530324330991.835$ 1249 n2e2du ep $+1.0 \mathrm{em}-1.02268 .249860043$ 4699 21250 n2e2du ep-1.0em $+1.0 \quad 20.883319883952 .1$ $21237 \mathrm{n} 2 \mathrm{e} 2 \mathrm{e} 1 \mathrm{n} 1 \mathrm{ep}+1$. $0 \mathrm{em}-1.0822 .26795800116 .507$ 21238 n2e2e1n1 ep-1,0em $+1.0 \quad 7.11354100001405 .77$ $21239 \mathrm{n} 2 \mathrm{e} 2 \mathrm{e} 1 \mathrm{n} 1 \mathrm{ep}+1.0 \mathrm{em}+1.028 .835228835999 .993$ 21241 n2e2e2n2 ep+1.0em-1.0 779,633 98800 126.726 $21242 \mathrm{n} 2 \mathrm{e} 2 \mathrm{e} 2 \mathrm{n} 2 \mathrm{ep}-1.0 \mathrm{em}+1.019 .397218197938 .125$ $21245 \mathrm{n} 2 \mathrm{e} 2 \mathrm{e} 3 \mathrm{n} 3 \mathrm{ep}+1$. 0 em-1.0 755.22897400128 .968 $21246 \mathrm{n} 2 \mathrm{e} 2 \mathrm{e} 3 \mathrm{n} 3 \mathrm{ep}-1.0 \mathrm{em}+1.07 .1102494001322 .04$ 21253 n 2 e 2 sc ep +1 . 0 em -1.02265 .789700042 .8109 1254 n2e2sc ep-1.0em $+1,0 \quad 20.893320493$ 980.841 21130 n 2 n 2 a ep-1.0em+1.0 2875+6128756 9. 99996 21141 n 2 n 2 aa ep +1 .0em-1.0 439.02243909 .9995 $21142 \mathrm{n} 2 \mathrm{n} 2 a \mathrm{aa}$ ep-1.0em+1.0 280.164280210 .0013 21154 n2n2aaa ep +1 +. 21389 n2n2bb ep+1 0em-1.0 59392147792804.68 1390 n2n2b ep +1 . $21329 \mathrm{n} 2 \mathrm{n} 2 \mathrm{cc} \mathrm{ep}^{2}+1$. $0 \mathrm{em}-1.054 .498544981000$ 21330 n2n2cc ep-1.0em +1.024 .527324327991 .83 21381 n 2 n 2 dd ep +1 . 0 em-1.0 60.673760474996 .709 21382 n 2 n 2 dd ep-1,0em+1.0 25.509 255091000 1372 n2n2elel ep-1.0em-1.0 16.1179 15718 975.189 21373 n2n2e1e1 ep+1.0em-1.0 38.3067 37307 973.903 $21374 \mathrm{n} 2 \mathrm{n} 2 \mathrm{e} 1 \mathrm{e} 1 \mathrm{ep}-1.0 \mathrm{em}+1.021 .4025214031000 .02$ 21375 nin2elel ep +1.0 em +1.016 .124161241000 $1377 \mathrm{n} 2 \mathrm{n} 2 \mathrm{e} 3 \mathrm{e} 3 \mathrm{ep}+1$.0em-1.0 $24+5789245791000$ $1378 \mathrm{n} 2 \mathrm{n} 2 \mathrm{e} 3 \mathrm{e} 3 \mathrm{ep}-1.0 \mathrm{em}+1.012 .772111772921 .69$ $20597 \mathrm{n} 2 \mathrm{n} 2 \mathrm{~h} \mathrm{ep}+1+0 \mathrm{em}-1+033.8385338391000 .01$ $21385 \mathrm{n} 2 \mathrm{n}^{2 s} \mathrm{ep}+1$ 0em-1 06053185693294053 1386 n2n2ss ep $-1+0$ em $+10 \quad 25503824304942+35$ 21325 n2n2uu ep +1 . 0 em-1.0 54.512552513963 .32 $21326 \mathrm{n} 2 \mathrm{n} 2 \mathrm{uu} \mathrm{ep}^{2}-1.0 \mathrm{em}+1.024+5195 \quad 24519999.98$ $21269 \mathrm{n} 3 \mathrm{e} 3 \mathrm{du} \mathrm{ep}^{+1.0 \mathrm{em}-1.0} 2264.4199000 \quad 43.72$ 21270 n3e3du ep-1.0em+1.0 20.848120248971 .216 $21257 n 3 e 3 e 1 n 1$ ep +1 . ©em-1.0 821.69198000119 .266 21258 n3e3e1n1 ep-1.0em+1.0 $7.103529600 \quad 1351.44$ $21259 \mathrm{n} 3 \mathrm{e} 3 \mathrm{e} 1 \mathrm{n} 1 \mathrm{ep}+1.0 \mathrm{em}+1.028,6767286771000.01$ 21261 n3e3e2n2 ep+1.0em-1.0 755.344 99800132.125 1262 n3e3e2n2 ep-1.0em+1.0 7,10407 10000 1407.6 $21265 \mathrm{n} 3 \mathrm{e} 3 \mathrm{e} 3 \mathrm{n} 3 \mathrm{ep}+1$.0em -1 .0 777.52399800128 .356 21266 n3e3e3n3 ep-1.0em+1.0 19.3359 19136 989.66 $21273 \mathrm{n} 3 \mathrm{e} 3 \mathrm{sc} \mathrm{ep}+1+0 \mathrm{~mm}-1+0 \quad 2267+889760043.0358$ $1133 n^{3} n^{3}$ a ep $+1.0 \mathrm{~m}-1.0448884489910$ 1134 n 3 n 3 a ep-1 0 em +1 . 02895 21145 n3n3аa ep +1 ,0em-1.0 $440,452440510.0011$ 21146 n 3 n 3 aa ep $-1+0$ em $+1.0 \quad 280.722 \quad 2807 \quad 9.99922$ 21157 n 3 n 3 aaa ep +1 .0em-1.0 $25.0412 \quad 2509.98355$ 21158 n 3 n 3 aaa ep -1 .0em $+1+016$. 099116110,0006 1409 n3n3bb ep+1.0em-1.0 59.3812 59381 999.997 21410 n3n3bb ep-1,0em +1.024 .936249361000 21337 n 3 n 3 cc ep +1 .0em-1.0 $54.5355 \quad 54335$ 996.323 1338 n3n3cc ep-1.0em+1.0 24.532 24132 983.695 1401 n 3 n 3 dd ep+1.0em-1.0 60.5857605861000 1402 n3n3dd ep-1.0em+1.0 25.5446 25545 1000.02 $21392 \mathrm{n} 3 n 3 \mathrm{e} 1 \mathrm{e} 1$ ep-1.0em-1.0 16.108316108999.981 $\begin{array}{llllllllllll}21393 n 3 n 3 e 1 e 1 ~ e p+1.0 e m-1.0 & 38.2851 & 37732 & 985.553 \\ 21394 n 3 n 3 e 1 e 1 ~ e p-1.0 e m+1.0 & 21.4031 & 20403 & 953.273\end{array}$ $\begin{array}{llll}21394 n 3 n 3 e 1 e 1 ~ e p-1.0 e m+1.0 & 21.4031 & 20403 & 953.273 \\ 21395 n 3 n 3 e 1 e 1 ~ e p+1.0 e m+1.0 ~ & 16.1459161461000 .01\end{array}$
$21397 \mathrm{n} 3 \mathrm{n} 3 \mathrm{e} 2 \mathrm{e} 2 \mathrm{ep}+1$. $0 \mathrm{em}-1.024 .723824324983 .829$ 10601 n 3 n 3 h ep +1 -1.0m-1. $1+312.83338141000 .01$ 20601 n 3 n 3 h ep +1.0 em-1.0 33.8138338141000 .01 21405 n 3 n 3 ss ep $+1.0 \mathrm{em}-1.060 .567605671000$ 21406 n 3 n 3 ss ep-1.0em+1.0 $25.5558 \quad 255561000.01$ 21333 n 3 n 3 uu ep +1 . 0 em- 1.0054 .508754109992 .667 21334 n3n3uu ep-1.0em $+1.0 \quad 24.548424348991 .836$ 21185 ss ep +1 .0em-1.0 48249.2982002 .03527 21186 ss ep-1.0em $+1.0 \quad 28018.899400 \quad 3.54762$ 21529 ssbb ep +1 . 0 em $-1+0 \quad 137.055100000729 .634$ 21530 ssbb ep-1.0em+1.0 58,9474 58947 999,993 20629 ssh ep +1 . 0 em -1 t. $075.880375880999,996$ 20630 ssh ep-1,0em+1.0 $48,5657485661000.01$ 1525 ssss ep +1 .0em-1.0 67.138866739994 .045 24993 ssssbb ep $+1.0 \mathrm{em}-1.0+0.001091100009+1659 \mathrm{e}+06$ 21289 uddu ep +1.0 em -1.06633 .4510000015 .0751
21290 uddu ep ${ }^{-1}$. 0 em $\mathrm{m}+1.0112 .876 \quad 99400 \quad 880.612$ 21277 ude1n1 ep +1.0 em-1.0 2467.759820039 .7933 21277 ude1n1 ep $+1,0 \mathrm{Dem}-1,02467+759820039.7933$ 21279 ude1n1 ep +1 .0em $+1.0 \quad 86+436486036 \quad 995.368$ 21281 ude2n2 ep +1 t. 0 em $-1.0 \quad 2268.378980039 .5879$ 21282 ude2n2 ep-1.0em+1.0 20.9171 19717942.626 21285 ude3n3 ep +1.0 em -1.02263 .5110000044 .1792 21286 ude3n3 ep-1.0em $+1.0 \quad 20.8931 \quad 20893999+995$
21293 udsc ep+1.0em-1.0 6522.19860015 .1178 21294 udsc ep-1.0em+1.0 59,9897 59190986,669 21161 uu ep $+1.0 \mathrm{em}-1+044890+2898002.00044$ 21162 uu ep-1.0em+1.0 27372954003.48531 21429 uubb ep+1.0em-1.0 123.961 99400801,865
 1346 uucc ep $+1+0$ em-1.0 $1.02+2965528921000.01$ 24457 uuccbb ep $+1.0 \mathrm{~mm}-1.00 .006837100001 .46263 \mathrm{e}+06$ 24458 uuccbb ep $-1.0 \mathrm{em}^{\mathrm{m}+1.0} 0.000357410000 \quad 2.79799 \mathrm{e}+06$
21412 uue1e1 ep-1.0em-1.0 $448.51999800 \quad 222.51$
21413 uue1e1 ep+1.0em-1.0 505.705 100000197.744
21414 une1e1 ep-1.0em+1.0 $464.733100000 \quad 215.177$
21415 uue1e1 ep $+1.0 \mathrm{em}+1.0449 .63699200220 .623$
21417 uue2e2 ep+1.0em-1.0 53.018753019 1000.01
21418 uue2e2 ep-1.0em+1.00 $29.2736 \quad 292741000+01$ 21421 uиe3e3 ep +1 . 0 em $-1.0 \quad 52.782452582996 .203$ 21422 uue3e3 ep-1.0em $+1.0 \quad 29.092927893958 .756$
$\begin{array}{lllll}20605 \\ 20606 \\ \text { uuh } \\ \text { ep }+1,0 e m-1.0 & 59,1744 & 59174 & 999,993\end{array}$
20606 uuh ep-1.0em $+1.037,9259379261000$
21426 uuss ep -1 . Oem $\mathrm{m}+1,0 \quad 120.98998800 \quad 816.603$
24713 uussbb ep $+1+0$ em-1.0 $0.004512100002 .21631 \mathrm{e}+06$
.

24441 uuubb ep $+1.0 \mathrm{em}-1.00 .00343510000 \quad 2.91121 \mathrm{e}+06$
24442 uuubb ep-1.0em $+1.00 .001759100005+68505 \mathrm{e}+06$

B Histograms of cut variables

B. $1 \quad Z \rightarrow e^{+} e^{-}$mode

Figures 17-28 show the histograms of cut variables. The blue lines in all histograms show the signal process $Z H \rightarrow e^{+} e^{-} \tau^{+} \tau^{-}$.

Figure 17: Number of tracks ≤ 8.

Figure 19: $\left|\cos \theta_{\text {miss }}\right|<0.99$.

Figure 18: $115 \mathrm{GeV}<E_{\text {vis }}<230 \mathrm{GeV}$.

Figure 20: $81 \mathrm{GeV}<M_{Z}<113 \mathrm{GeV}$.

Figure 21: $\cos \theta_{e^{-}}<0.92$.

Figure 22: $\cos \theta_{e^{+}}>-0.92$.

Figure 23: $E_{e^{-}}<90 \mathrm{GeV}$.

Figure 27: $\cos \theta_{\tau^{+}}>-0.92$.

Figure 25: $\cos \theta_{\tau^{+} \tau^{-}}<-0.45$.

Figure 24: $E_{e^{+}}<90 \mathrm{GeV}$.

Figure 26: $\cos \theta_{\tau^{-}}<0.92$.

Figure 28: $116 \mathrm{GeV}<M_{\text {recoil }}<142 \mathrm{GeV}$.

B. $2 \quad Z \rightarrow \mu^{+} \mu^{-}$mode

Figures 29-36 show the histograms of cut variables. The red lines in all histograms show the signal process $Z H \rightarrow \mu^{+} \mu^{-} \tau^{+} \tau^{-}$.

Figure 29: Number of tracks ≤ 8.

Figure 30: $115 \mathrm{GeV}<E_{\text {vis }}<235 \mathrm{GeV}$.

Figure 31: $\left|\cos \theta_{\text {miss }}\right|<0.98$.

Figure 33: $E_{e^{-}}<90 \mathrm{GeV}$.

Figure 32: $72 \mathrm{GeV}<M_{Z}<107 \mathrm{GeV}$.

Figure 34: $E_{e^{+}}<90 \mathrm{GeV}$.

Figure 35: $\cos \theta_{\tau^{+} \tau^{-}}<-0.5$.

Figure 36: $118 \mathrm{GeV}<M_{\text {recoil }}<143 \mathrm{GeV}$.

B. $3 Z \rightarrow q \bar{q}$ mode

Figures 37-49 show the histograms of cut variables. The blue lines in all histograms show the signal process $Z H \rightarrow q \bar{q} \tau^{+} \tau^{-}$.

Figure 37: $9 \leq$ number of tracks <50.

Figure 39: $\left|\cos \theta_{\text {miss }}\right|<0.98$.

Figure 38: $110 \mathrm{GeV}<E_{\text {vis }}<235 \mathrm{GeV}$.

Figure 40: $77 \mathrm{GeV}<M_{Z}<135 \mathrm{GeV}$.

Figure 41: $80 \mathrm{GeV}<E_{Z}<135 \mathrm{GeV}$.

Figure 42: $\cos \theta_{\tau^{+} \tau^{-}}<-0.5$.

Figure 43: $\quad \log _{10}\left(\left|d_{0} / \sigma\left(d_{0}\right)\right|\right)\left(\tau^{-}\right) \quad+$ Figure $\quad 44: \quad \log _{10}\left(\left|z_{0} / \sigma\left(z_{0}\right)\right|\right)\left(\tau^{-}\right) \quad+$ $\log _{10}\left(\left|d_{0} / \sigma\left(d_{0}\right)\right|\right)\left(\tau^{+}\right)>-0.7$. $\log _{10}\left(\left|z_{0} / \sigma\left(z_{0}\right)\right|\right)\left(\tau^{+}\right)>-0.1$.

Figure 45: $M_{\tau^{+} \tau^{-}}<115 \mathrm{GeV}$.

Figure 46: $E_{\tau^{+} \tau^{-}}<125 \mathrm{GeV}$.

Figure 47: $100 \mathrm{GeV}<M_{\text {colapp }}<170 \mathrm{GeV}$.

Figure 49: $112 \mathrm{GeV}<M_{\text {recoil }}<160 \mathrm{GeV}$.

Figure 48: $100 \mathrm{GeV}<E_{\text {colapp }}<280 \mathrm{GeV}$.

References

[1] The ATLAS Collaboration, "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC", Physics Letters B 716 (2012) 1-29
[2] The CMS Collaboration, "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC", Physics Letters B 716 (2012) 30-61
[3] P. Mora de Fretias, H. Videau, "Detector simulation with Mokka/Geant4 present and future", LC-TOOL-2003-010 (2003)
[4] http://geant4.cern.ch/
[5] S. Jadach, J. H. Kühn, Z. Was, "TAUOLA - a library of Monte Carlo programs to simulate decays of polarized τ leptons", Computer Physics Communications 64 (1991) 275-299
[6] The ILD concept group, "International Large Detector - Letter of Intent" (2010)
[7] http://ilcsoft.desy.de/portal
[8] T. Sjöstrand, S. Mrenna, P. Skands, "PYTHIA 6.4 physics and manual", Journal of High Energy Phyiscs 0605, 026 (2006)
[9] LHC Higgs Cross Section Working Group, "Handbook of LHC Higgs Cross Sections: 2. Differential Distributions", arXiv:1201.3084v1 [hep-ph]
[10] R. K. Ellis, I. Hinchliffe, M. Soldate, J. J. van der bij, "Higgs decay to $\tau^{+} \tau^{-}$A possible signature of intermediate mass Higgs bosons at high energy hadron colliders", Nuclear Physics B 297 (1988) 221-243
[11] S. Catani, Y. L. Dokshitzer, M. Olsson, G. Turnock, B. R. Webber, "New clustering algorithm for multijet cross sections in $e^{+} e^{-}$annihilation", Physics Letters B 269 (1991) 432-438

