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to the quantum corrections, which therefore must be incorporated in theo-
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chargino–neutralino sector of the minimal supersymmetric standard model,
this involves fitting one-loop predictions to prospective measurements of the
cross sections, forward-backward asymmetries and of the accessible chargino
and neutralino masses. Taking recent results from LHC SUSY and Higgs
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with characteristic features. Our analysis shows how an accurate determina-
tion of the desired parameters is possible, providing in addition access to the
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1 Introduction

A linear collider (LC) [1–5] will be an ideal environment for high preci-
sion studies of physics beyond the standard model (BSM). A particularly
well-motivated BSM theory is the minimal supersymmetric standard model
(MSSM). This provides the lightest neutralino as a candidate to explain the
evidence for dark matter in the universe [6, 7]. Further, naturalness argu-
ments (see e.g. ref. [8]) support light higgsino-like charginos and neutralinos,
as also predicted by GUT motivated SUSY models [9]. Due to the challenges
involved in detecting electroweakinos at the LHC, current bounds coming
from the ATLAS and CMS exclude only small regions of parameter space,
see e.g. refs. [10,11]. The charginos and neutralinos could therefore be within
reach of a first stage linear collider.

One approach to determine the fundamental MSSM parameters is to con-
sider constrained models such as the constrained minimal supersymmetric
standard model (CMSSM), and perform a global fit of this reduced set of
parameters to all relevant experimental results available, see e.g. ref. [12].
Here on the other hand, in order to precisely determine the nature of the
underlying SUSY model, we wish to determine the fundamental parameters
in the most model-independent way possible. The determination of the U(1)
parameter M1, the SU(2) parameter M2, the higgsino parameter µ and tan β,
the ratio of the vacuum expectation values of the two neutral Higgs doublet
fields, at the percent level via chargino and neutralino pair-production has
been shown to be possible at LO (see ref. [13] and references therein). Due
to the expected high precision of mass and coupling measurements at the
LC, as well as the fact that one-loop effects in the MSSM may be sizeable,
higher order effects have to be considered. Taking these corrections into ac-
count additional MSSM parameters become relevant, such as the masses of
the stops and sleptons, which are also so far weakly constrained by the LHC.

In this paper we show how it would be possible to determine the funda-
mental parameters of the chargino and neutralino sector at the LC, including
the complications arising due to higher order effects. Specifically, we calcu-
late the next-to-leading order (NLO) corrections to the cross-section (σ) and
forward-backward asymmetry (AFB) for chargino production, and also to the
chargino and neutralino masses. A number of next-to-leading order (NLO)
calculations of chargino and neutralino pair production at the LC can be
found in the literature [14–18]. We perform our calculations in the on-shell
(OS) scheme such that, as far as possible, the mass parameters can be in-
terpreted as the physical masses. Recent work on the OS renormalization of
the chargino-neutralino sector can be found in refs. [18–24].

By fitting loop corrected predictions to these experimental results we show
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that it is possible to extract the fundamental parameters of the MSSM La-
gangian. However due to the greater number of parameters, performing the
fit is more involved than for the LO analysis. Choosing three potential MSSM
scenarios, we assess the impact of the loop corrections and the feasibility of
such an extraction in each. We further investigate the impact of obtaining
masses of the charginos and neutralinos from threshold scans rather than the
continuum (see ref. [1]) on the resulting accuracy of the parameters obtained
from the fit.

The paper is organised as follows. In sec. 2 we introduce the process
studied and define necessary notation. We then provide details of the calcu-
lation of the loop corrections in sec. 3, including details of the renormalization
scheme used. In sec. 4 we further discuss the method employed in order to
fit to the MSSM parameters, define the scenarios considered, and present our
results. Finally in sec. 5 we discuss the implications of the results of the fits.

2 Process studied and tree-level relations

In this paper we study the determination of the fundamental parameters
in the chargino–neutralino sector of the MSSM, via chargino production at
a LC. The charginos, χ̃±, and neutralinos, χ̃0, are the mass eigenstates of
the gauginos and higgsinos, as seen from the relevant part of the MSSM
Lagrangian [25],

Lχ̃ =χ̃−i (6p δij − PL(U∗XV †)ij − PR(V X†UT )ij)χ̃
−
j

+
1

2
χ̃0
i ( 6p δij − PL(N∗Y N †)ij − PR(NY †NT )ij)χ̃

0
j , (1)

where PL/R = 1/2(1∓ γ5). The mass matrix for the charginos is given by

X =

(
M2

√
2MW sβ√

2MW cβ µ

)
, (2)

where sβ/cβ ≡ sin β/ cos β, and MW is the mass of the W boson. This matrix
is diagonalised via the bi-unitary transformation Mχ̃+ = U∗XV †, where U
and V are complex unitary matrices. The mass matrix for the neutralinos in
the (B̃, W̃ , H̃1, H̃2) basis is given by

Y =


M1 0 −MZcβsW MZsβsW
0 M2 MZcβcW −MZsβcW

−MZcβsW MZcβcW 0 −µ
MZsβsW −MZsβcW −µ 0

 , (3)
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Figure 1: Tree-level diagrams for the production of charginos χ̃+
1 and χ̃−1 at

the LC.

where sW (cW ) is the sin(cos) of the weak mixing angle θW . Since Y is complex
symmetric, its diagonalisation requires only one unitary matrix N , via Mχ̃0 =
N∗Y N †.

As described in detail in sec. 4, the parameter determination relies on the
measurement of the masses of the charginos and neutralinos, the polarised
cross-section for the pair production of charginos, χ̃−1 ,

σ(e+e− → χ̃+
1 χ̃
−
1 ), (4)

and the forward-backward asymmetry defined by,

AFB =
σ(cos θ > 0)− σ(cos θ < 0)

σ(cos θ > 0) + σ(cos θ < 0)
, (5)

for the unpolarised cross-section, where θ is the angle of the momentum of
the chargino χ̃−1 with respect to the momentum of the incoming electron e−.

Neglecting the electron-Higgs couplings, this process occurs at leading
order via three diagrams, as seen in fig. 1.

The transition matrix element can be written as [26],

Mαβ(e+e− → χ̃+
i χ̃
−
j ) =

e

s
Qαβ

[
v̄(e+)γµPαu(e−)

] [
ū(χ̃−j )γµPβv(χ̃+

i )
]
, (6)

where Qαβ denotes the bilinear charges, α = L,R refers to the chirality of the
e+e− current and β = L,R to that of the χ̃+

i χ̃
−
j current. The summation over

α and β is implied. The bilinear charges are comprised of the propagators
and couplings

QLL =CL
χ̃+
i χ̃

−
j γ
−DZGLC

L
χ̃+
i χ̃

−
j Z
,

QRL =CL
χ̃+
i χ̃

−
j γ
−DZGRC

L
χ̃+
i χ̃

−
j Z
,

QLR =CR
χ̃+
i χ̃

−
j γ

+DZGL

(
CR
χ̃+
i χ̃

−
j Z

)∗
+

i

2 e
Dν̃

(
CR
ν̃ee+χ̃

−
i

)∗
CR
ν̃ee+χ̃

−
j
,

QRR =CR
χ̃+
i χ̃

−
j γ

+DZGR

(
CR
χ̃+
i χ̃

−
j Z

)∗
, (7)
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for which the required MSSM couplings for the χ̃+
i χ̃
−
j γ, χ̃+

i χ̃
−
j Z and eν̃eχ̃

+
i

vertices are given by

C
L/R

χ̃+
i χ̃

−
j γ

= ieδij,

CL
χ̃+
i χ̃

−
j Z

= − ie

cW sW

(
s2
W δij − U∗j1Ui1 −

1

2
U∗j2Ui2

)
,

CR
χ̃+
i χ̃

−
j Z

=CL
χ̃+
i χ̃

−
j Z

(U → V ∗),

CR
ν̃ee+χ̃

−
i

=− ie

sW
Vi1, (8)

and GL, GR, DZ and Dν̃ are defined via

GL =
s2
W − 1

2

sW cW
, GR =

sW
cW

,

DZ =
s

s−M2
Z

, Dν̃ =
s

t−m2
ν̃

. (9)

In the equations above, e denotes the electric charge, me and MZ are the
masses of the electron and Z boson. DZ and Dν̃ refer to the propagators
of the Z boson and sneutrino (of mass mν̃), in terms of the Mandelstam
variables s and t.

One can therefore express the transition matrix element in terms of M2, µ
and tan β, in addition to the known SM parameters. However, the expected
accuracy of the measurements at the linear collider is such that one-loop
corrections become relevant, and we shall see in the following section how
the higher order expressions depend on many additional MSSM parameters.

3 NLO contributions and renormalization

We have calculated the full one-loop corrections to the forward-backward
asymmetry for process e+e− → χ̃+

1 χ̃
−
1 , within the complex MSSM; the corre-

sponding corrections to the cross section were calculated in ref. [18]. Exam-
ples for the contributing self-energy, vertex and box diagrams are shown
in fig. 2. As in ref. [18], for the calculation we have used the program
FeynArts [27–31], which allowed an automated generation of the Feynman
diagrams and amplitudes. Together with the packages FormCalc [32–34]
and LoopTools [32] we derived the final matrix elements and loop integrals.
We assume a unit CKM matrix. We regularise using dimensional reduc-
tion [35–37], which ensures that SUSY is preserved, via the implementation
described in refs. [32, 38].
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Figure 2: Examples of one-loop self-energy (upper), vertex (middle) and box
(lower) diagrams for the production of charginos χ̃+

1 and χ̃−1 at the LC.

A number of one-loop calculations in the gaugino-higgsino sector can be
found in the literature, mainly in the CP-conserving MSSM [14, 39–46], but
some of which apply a renormalization scheme that is also applicable for
complex parameters [14, 45]. CP-odd observables have also been calculated
at the one-loop level, for instance in refs. [47–49], but no dedicated renormal-
ization scheme was required in these cases as the observables studied were
UV-finite. Since we intend to extend the current study to the case of complex
parameters, here we follow the approach of refs. [18,20] closely, where a dedi-
cated on-shell renormalization scheme for the chargino and neutralino sector
of the MSSM with complex parameters was developed. In the following we
will therefore only discuss the parameter renormalization of the chargino and
neutralino sector, relevant for the definitions of the parameters at loop level,
briefly and for further details about the chargino field renormalization and
the renormalization of other sectors we refer the reader to refs. [18,20,21,24].

The mass matrix in the chargino sector, eq. (2), is renormalized via

X → X + δX, (10)
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where δX is defined by

δX =

(
δM2

√
2δ(MW sβ)√

2δ(MW cβ) δµ

)
, (11)

containing the renormalization constants δM2 and δµ, as well as renormaliza-
tion constants (RCs) from other sectors, δcβ, δsβ (which can be expressed in
terms of δ tan β), and δMW , defined in ref. [18]. The neutralino mass matrix,
eq. (3), is similarly renormalized via

Y → Y + δY, (12)

where δY is defined analogously to δX in eq. (11) and contains the additional
RC δM1, cf. eq. (3).

Following e.g. ref. [20], δM1, δM2 and δµ are determined by choosing
three out of the total six physical masses of the charginos and neutralinos
to be on-shell, i.e. the tree-level masses, mχ̃i , coincide with the one-loop
renormalized masses, Mχ̃i = mχ̃i + ∆mχ̃i ,

∆mχ̃i ≡ −
mχ̃i

2
Re[Σ̂L

ii(m
2
χ̃i

) + Σ̂R
ii(m

2
χ̃i

)]− 1

2
Re[Σ̂SL

ii (m2
χ̃i

) + Σ̂SR
ii (m2

χ̃i
)]

= 0. (13)

We define the coefficients Σ
L/R
ij (p2) and Σ

SL/SR
ij (p2) of the self energy via

Σij(p
2) = 6pPLΣL

ij(p
2) + 6pPRΣR

ij(p
2) + PLΣSL

ij (p2) + PRΣSR
ij (p2), (14)

and define the left and right handed vector and scalar coefficients of the renor-
malized self-energy analogously via Σ̂

L/R
ij (p2) and Σ̂

SL/SR
ij (p2) respectively.

As stated earlier, we consider the parameter renormalization as for the
complex MSSM, such that our setup is easily adaptable for future extensions.
In ref. [18,21], it was shown that in the CP violating case, the 1-loop correc-
tions to the phases of M1 and µ, i.e. φM1 and φµ respectively1 are UV finite.
Therefore we take the approach that these phases can be left unrenormalized.
We can then determine the necessary conditions to obtain the absolute values
|M1|, |M2| and |µ|, depending on which three physical masses are chosen to
be on-shell. As we have two external charginos, and in order to easily extend
our setup to the case of χ̃+

1 χ̃
−
2 production, we assume the NCC scheme with

χ̃0
1, χ̃

±
1 and χ̃±2 on-shell [18, 20–22], such that i′ = 1 and i′′ = 1 and 2. Note

that in choosing the scheme, it is desirable that the on-shell particles should
contain significant bino, wino and higgsino components, in order that the

1We adopt the convention that M2 is real.
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M1, M2 and µ parameters are accessible [18, 20–22]. For the above choice,
these conditions are satisfied for all the scenarios defined in sec. 4, in which
the lightest neutralino always has a sizeable bino-like component. The pa-
rameters in question of the chargino mass matrix can then be renormalized
via expressions given in refs. [18,21,24], which we list here for completeness,

δ|M1| =−
1

Re (e−iφM1 N2
i1)F(

(2Re (e−iφµNi3Ni4)Re (Uj1Vj1) + ReN2
i2Re (e−iφµUj2Vj2))Ck

+ (Re (Uj1Vj1)Re (e−iφµUk2Vk2)− Re (e−iφµUj2Vj2)Re (Uk1Vk1))Ni

− (ReN2
i2Re (e−iφµUk2Vk2) + 2Re (e−iφµNi3Ni4) Re (Uk1Vk1))Cj

)
, (15)

δ|M2| =
1

F

(
Re (e−iφµUj2Vj2)Ck − Re (e−iφµUk2Vk2)Cj

)
, (16)

δ|µ| = − 1

F

(
Re (Uj1Vj1)Ck − Re (Uk1Vk1)Cj

)
. (17)

F , Ci and Ni are defined by

F = 2
(
Re (Uk1Vk1)Re (e−iφµUj2Vj2)− Re (Uj1Vj1) Re (e−iφµUk2Vk2)

)
, (18)

Ci = Re
[
mχ̃+

i
[ΣL
±,ii(m

2
χ̃+
i

) + ΣR
±,ii(m

2
χ̃+
i

)] + ΣSL
±,ii(m

2
χ̃+
i

) + ΣSR
±,ii(m

2
χ̃+
i

)
]

−
∑
j=1,2
k=1,2

2δXjkRe (UijVik), (19)

Ni = Re
[
mχ̃0

i
[ΣL

0,ii(m
2
χ̃0
i
) + ΣR

0,ii(m
2
χ̃0
i
)] + ΣSL

0,ii(m
2
χ̃0
i
) + ΣSR

0,ii(m
2
χ̃0
i
)
]

−
∑
j=1,2
k=3,4

4δYjkRe (NijNik), (20)

and the subscripts ± and 0 identify the coefficients of the chargino and neu-
tralino self-energy respectively.2

Finite results for the process of interest at one-loop are obtained by adding
the counterterm diagrams shown in fig. 3. Although FeynArts generates
these diagrams, expressions for the counterterms which renormalize the cou-
plings defined at tree-level in eq. (6), calculated in ref. [18], are required as
input, and therefore, again for completeness, we provide expressions for these
explicitly. For the γχ̃+

i χ̃
−
j , Zχ̃+

i χ̃
−
j and eν̃eχ̃

+
i vertices, these can be expressed

as follows,

δCL
χ̃+
i χ̃

−
j γ

= CL
χ̃+
i χ̃

−
j γ

(
δZe +

δZγγ
2

)
+ CL

χ̃+
i χ̃

−
j Z

δZZγ
2

+
ie

2

(
δZL
±,ij + δZ̄L

±,ij
)
,

2Here Ni should not be confused with the neutralino mass matrix Nij .
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Figure 3: Counterterm diagrams in the MSSM for the production of charginos
χ̃+

1 and χ̃−1 at the LC.

δCL
χ̃+
i χ̃

−
j Z

= CL
χ̃+
i χ̃

−
j Z

(
δZe −

δcW
cW
− δsW

sW
+
δZZZ

2

)
+ CL

χ̃+
i χ̃

−
j γ

δZγZ
2

− 2ie
δsW
cW

δij +
1

2

∑
n=1,2

(
δCL

χ̃+
i χ̃

−
nZ
ZL
±,nj + CL

χ̃+
n χ̃

−
j Z
δZ̄L
±,in

)
, (21)

where the analogous right-handed parts are obtained by the replacement
L→ R, and

δCR
ν̃ee+χ̃

−
i

= CR
ν̃ee+χ̃

−
i

(
δZe −

δsW
sW

+
1

2

(
δZν̃e + δZL∗

e

))
+

1

2

(
CR
ν̃ee+χ̃

−
1
δZR
±,1i + CR

ν̃ee+χ̃
−
2
δZR
±,2i

)
. (22)

Note that the renormalization constants of the SM fields, i.e. ZV V (V = γ, Z)
and δZL

e for the vector bosons and electron, and parameters, i.e. δZe and
δcW (sW ) for the electric charge and cos(sin) of the weak mixing angle re-
spectively, can be found in ref. [18]. The renormalization for the chargino
fields is performed in the most general manner, making use of separate RCs
for the incoming and outgoing fields, i.e. coefficients δZ

L/R
±,ij and δZ̄

L/R
±,ij re-

spectively for left and right-handed charginos as given in ref. [18]. Finally,
the counterterm for the sneutrino self energy takes the form

δCν̃iν̃j = iδij

(
1

2
(δZν̃i + δZ∗ν̃i)p

2 − δm2
ν̃i
−
m2
ν̃i

2
(δZν̃i + δZ∗ν̃i)

)
, (23)

for ν̃i = ν̃e, ν̃µ, ν̃τ , where the sneutrino field and mass RCs, δZ∗ν̃i and δmν̃i ,
are also defined following ref. [18].
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Inital and final state soft radiation must also be included to obtain an
infra-red finite result as the incoming and outgoing particles are charged,
and this is done as described in detail in ref. [18], using the phase-space
slicing method to define the singular soft and collinear contributions in the
regions E < ∆E and θ < ∆θ respectively. In the soft and collinear limit,
the results are regularised using electron and photon masses, respectively,
and factorised into analytically integrable expressions proportional to the
tree-level cross-section σtree(e+e− → χ̃+

1 χ̃
−
1 ). However the result is cut-off

dependent (i.e. on ∆E and ∆θ), and removing this dependence requires a
calculation of the cross section for the three body final state, excluding the
soft and collinear regions, which we perform using FeynArts and FormCalc.
We further require that soft photon radiation is included in the cross-section
obtained from FormCalc. Finally we obtain a complete IR finite and cut-off
independent result by adding the collinear contribution, which is calculated
following the procedure outlined in ref. [14].

4 Fit strategy and numerical results

4.1 Obtaining MSSM parameters from the fit

With the loop corrections calculated as in section 3, we can determine the
fundamental parameters of the MSSM at NLO. From now on, we will restrict
our study to the case of real parameters. In the chargino and neutralino
sectors there are four real parameters, see sec. 2, which we fit to,

M1, M2, µ, tan β . (24)

We additionally fit to the sneutrino mass, as this enters at tree level and
will therefore significantly affect cross sections and forward-backward asym-
metries. However in those scenarios where the sneutrino would already have
been observed at the LC, its mass is assumed to be known. At the loop
level, a large number of MSSM parameters will contribute. Depending on
the scenario, only limited knowledge about some of these may be available.
In particular LHC data may only provide limited information about the pa-
rameters of the stop sector, and direct production at the LC might not be
possible. However, our analysis also offers good sensitivity to these parame-
ters at the LC, as stops could significantly contribute to chargino/neutralino
observables at NLO.

At the LC, masses are expected to be measured with high precision using
different methods [1]. In the following we adopt the experimental precision
which could be achieved using the threshold scan method, however we also
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investigate how the fit precision would change if the masses were obtained
from the continuum. In case of the cross sections, the experimental uncer-
tainty is dominated by the statistical uncertainty [50],

∆σ

σ
=

√
S +B

S
, (25)

where S and B are the signal and background contributions, respectively.
In addition, we assume that the statistical uncertainties for the cross sec-
tions correspond to an integrated luminosity of L = 200 fb−1 per polarisa-
tion assuming the efficiency of ε = 15%, which includes branching ratios for
semileptonic final states and a selection efficiency of 50% [50]. Similarly, for
the forward-backward asymmetry we have

δAstat
FB =

√
1− A2

FB

N
, (26)

and the total number of events N = N+ +N− [50].
In order to estimate the theoretical uncertainty on the masses, cross-

sections and forward backward asymmetries, we consider the size of possible
effects due to neglected higher order corrections as well as unknown MSSM
parameters not included in the fit. NNLO corrections are an important source
of theoretical uncertainty, however, at present, corrections of this kind are
only known for chargino and neutralino masses, for which the leading SUSY-
QCD NNLO corrections were calculated in ref. [46]. Based on these results
we estimate the uncertainty on the masses due to NNLO corrections to be
of the order of 0.5 GeV, i.e. comparable to the expected experimental un-
certainty. Note that the masses chosen on-shell are assigned no theoretical
uncertainty. We further neglect the currently unknown uncertainties aris-
ing due to NNLO corrections to the cross-sections and forward backward
asymmetries, assuming that in the future NNLO results for these could be
incorporated. However, we do include the additional uncertainty arising due
to any unknown MSSM parameters which are not included in the fit, dom-
inated by the contribution from the heavy pseudoscalar Higgs boson mass
mA0 . We perform a multi-dimensional χ2 fit using Minuit [51, 52]

χ2 =
∑
i

∣∣∣∣Oi − ŌiδOi

∣∣∣∣2 , (27)

where the sum runs over the input observables Oi, depending on the scenario,
with their corresponding experimental uncertainties δOi.
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4.2 Scenarios studied and motivation

We carry out the fit for three scenarios, S1, S2 and S3, shown in tab. 1,
chosen in order to realistically assess the sensitivity to the desired parameters
in a number of possible situations. Due to the current status of direct LHC
searches [53,54], in all scenarios we require heavy first and second generation
squarks and gluinos, while the stop sector is assumed to be relatively light.3

In S1 and S2 we take the masses of the stops, mt̃1 and mt̃2 , to be 400 GeV and
800 GeV respectively, and the mixing angle to be cos θt = 0. The sbottom
sector can then be obtained by defining mb̃1

= 400 GeV and cos θb = 0. On
the other hand in S3, in order to obtain mh = 125 GeV, calculated using
FeynHiggs 2.9.1 [55–58], such that it is compatible with the recent Higgs
results from the LHC [59, 60], the stop sector parameters are chosen to be
mu3 = 450 GeV, mq3 = 1500 GeV and At = −1850 GeV, ensuring large
mixing between the stops, such that cos θt = 0.148. The sbottom sector is
then obtained by defining mb̃1

= 450 GeV and cos θb = 0. In fig. 4, for each
of these scenarios, the mass corrections for neutralinos χ̃0

2 and χ̃0
3 are seen to

be sensitive to the stop mixing angle.
As a result of indirect limits (checked using micrOmegas 2.4.1 [61,62]),

we have chosen mixed gaugino higgsino scenarios favoured by the relic density
measurements [63] and relatively high pseudoscalar Higgs masses in light of
flavour physics constraints, e.g. the branching ratio of B(Bs → µ+µ−) [64].
We also check that our scenarios agree with the experimental results for
branching ratio B(b → sγ) and the anomalous magnetic moment of the
muon ∆(gµ − 2)/2. Further, in S2 we study the sensitivity of the fit to large
values of M2, such that the wino-like chargino and neutralino are heavy and
decoupled from the bino and higgsino-like particles. Finally, in S1/S2 we
consider the case that the sleptons (with the exception of the light stau) and
pseudoscalar Higgs bosons are at the TeV scale, and in S3 the case that they
are relatively light. Therefore, while S1/S2 are not in keeping with the 125
GeV Higgs boson, they provide illustrative examples of the potential of the
LC in scenarios complementary to S3.4

3Note that in light of current LHC limits, the value M3=700 GeV in S1 and S2 means
that the gluino mass is rather low, however our results are largely independent of this
choice as M3 only enters our calculations via two loop corrections to mh.

4Note that in S1(S2) a Higgs mass of mh = 125 GeV can also be achieved by adopting
cos θt = −0.4 (−0.5).
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Scenario 1/2

M1 125 M2 250/2000
µ 180 MA0 1000
M3 700 tan β 10
Mq1,2 1500 Aq1,2 650
Ml/e1,2 1500 Ali 650
Ml3 800 Me3 400

Scenario 3

M1 106 M2 212
µ 180 MA0 500
M3 1500 tan β 12
Mq1,2 1500 Aq1,2 -1850
Mli 180 Ali -1850
Me1,2 125 Me3 106

Table 1: Parameters for scenarios 1/2 and 3 (S1/S2 and S3), in GeV with the
exception of tan β. Here M(l/q)i (M(e/u/d)i) represents the left (right) handed
mass parameter for a slepton/squark of generation i respectively (jointly
referred to as Mfi), and Af is the trilinear coupling for a sfermion f̃ . See
text for stop and sbottom parameter definitions.

4.3 Results for scenario 1

In this scenario, only the charginos and three neutralinos will be accessible
at the LC. As input for the fit we therefore use:

• the masses of the charginos (χ̃±1 , χ̃
±
2 ) and three lightest neutralinos

(χ̃0
1, χ̃

0
2, χ̃

0
3)

• the light chargino production cross section σ(χ̃+
1 χ̃
−
1 ) with polarised

beams at
√
s = 350 and 500 GeV

• the forward-backward asymmetry AFB at
√
s = 350 and 500 GeV

• the branching ratio B(b→ sγ) calculated using micrOmegas 2.4.1 [61,
62].

The input variables, together with errors, namely the assumed experimen-
tal precision of the prospective LC measurements as well as the theoretical

12
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Figure 4: One-loop corrections to the masses of neutralinos χ̃0
2 (upper) and

χ̃0
3 (lower) as a function of the stop mixing angle cos θt, for scenarios S1

(blue), S2 (red, dashed) and S3 (green, dotted).

uncertainties, are listed in tab. 4.3. It is interesting to observe the large
NLO corrections to AFB, which even result in a change of sign. Note that
B(b→ sγ) is included in order to increase sensitivity to the third generation
squark sector, and the estimated experimental precision of 0.3 · 10−4, taken
from ref. [65], is adopted. We found that the impact of the muon anoma-
lous magnetic moment is negligible in this scenario, mainly due to the heavy
smuon sector. It should be possible to probe the supersymmetric QCD sec-
tor, with sqark masses of ∼1.5 TeV and the gluino mass of ∼ 700 GeV, at the
LHC, such that the theoretical uncertainty arising due to these parameters is
small in comparison to that due to the unknown MA0 . We therefore include
the small dependence on the A0 mass as an additional source of error, having
explicitly checked that the impact of all other parameters is negligible. Note
that there are no theoretical errors for masses chosen to be on-shell. Even
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Observable Tree value Loop corr. Error exp. Error th.

mχ̃±1
149.6 − 0.1 (0.2) −

mχ̃±2
292.3 − 0.5 (2.0) −

mχ̃0
1

106.9 − 0.2 −

mχ̃0
2

164.0 2.0 0.5 (1.0) 0.5

mχ̃0
3

188.6 −1.5 0.5 (1.0) 0.5

σ(χ̃+
1 χ̃
−
1 )350

(−0.8,0.6) 2347.5 −291.3 8.7 2.0

σ(χ̃+
1 χ̃
−
1 )350

(0.8,−0.6) 224.4 7.6 2.7 0.5

σ(χ̃+
1 χ̃
−
1 )500

(−0.8,0.6) 1450.6 −24.4 8.7 2.0

σ(χ̃+
1 χ̃
−
1 )500

(0.8,−0.6) 154.8 12.7 2.0 0.5

A350
FB(%) −2.2 6.8 0.8 0.1

A500
FB(%) −2.6 5.3 1.0 0.1

Table 2: Observables (masses in GeV, cross sections in fb) used as input for
the fit in S1, tree-level values and loop corrections are specified. Here the
superscript on σ and AFB denotes

√
s in GeV, and the subscript on σ denotes

the beam polarisation (P(e−),P(e+)). The central value of the theoretical
prediction, B(b → sγ) = 3.3 · 10−4 GeV, calculated using state-of-the-art
tools, is also included in the fit. Errors in brackets are for masses obtained
from the continuum. See text for details of error estimation.

at one loop, these masses are related to the fundamental parameters via the
tree level relations, and are included in the fit.

In S1 we fit 8 MSSM parameters: M1, M2, µ, tan β, mν̃ , cos θt, mt̃1 , and
mt̃2 . The results of the fit are given in tab. 3. We find that the gaugino
and higgsino mass parameters are determined with an accuracy better than
1%, while tan β is determined with an accuracy of 5%. Excellent precision
of 2-3% is obtained for the mass of the otherwise unobservable sneutrino.
Including NLO effects even allows us to constrain the parameters of the stop
sector. Although the precision shown in tab. 3 is rather limited, this could
lead to an important hint concerning the masses of the stops, which, if not
already seen, might allow for a well-targeted search at the LHC. This could
be another example of LC-LHC interplay [66].
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Parameter Threshold fit Continuum fit

M1 125±0.3 (±0.7) 125±0.6 (±1.2)

M2 250±0.6 (±1.3) 250±1.6 (±3)

µ 180±0.4 (±0.8) 180±0.7 (±1.3)

tan β 10±0.5 (±1) 10±1.3 (±2.6)

mν̃ 1500±24 (+60
−40) 1500±20 (±40)

cos θt 0±0.15 (+0.4
−0.3) −

mt̃1 400+180
−120 (at limit

at limit) −

mt̃2 800+300
−170 (+1000

−290 ) 800+350
−220 (at limit

at limit)

Table 3: Fit results (masses in GeV) for S1, for masses obtained from thresh-
old scans (threshold fit) and from the continuum (continuum fit). Numbers
in brackets denote 2σ errors.

Finally, in tab. 3 we compare the fit results using masses of the charginos
and neutralinos obtained from threshold scans and from the continuum. For
the latter, the accuracy at which the parameters can be determined is seen
to deteriorate, with errors on the fundamental parameters almost doubling,
clearly indicating the need to measure chargino and neutralino masses via
threshold scans.

4.4 Results for scenario 2

In this scenario, where the M2 parameter is set to 2 TeV, only the light
chargino and three lightest neutralinos will be accessible at the LC. As input
for the fit we therefore use:

• the masses of the lighter chargino (χ̃±1 ) and neutralinos (χ̃0
1, χ̃

0
2, χ̃

0
3)

• the light chargino production cross section σ(χ̃+
1 χ̃
−
1 ) with polarised

beams at
√
s = 400 and 500 GeV

• the forward-backward asymmetry AFB at
√
s = 400 and 500 GeV

• the branching ratio B(b→ sγ).
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Observable Tree value Loop corr. Error exp. Error th.

mχ̃±1
179.1 − 0.1 −

mχ̃0
1

111.1 − 0.2 −
mχ̃0

2
183.6 0.07 0.5 0.5

mχ̃0
3

194.2 1.9 0.5 0.5

σ(χ̃+
1 χ̃
−
1 )400

(−0.8,0.6) 1214.9 −344.7 6.0 0.1

σ(χ̃+
1 χ̃
−
1 )400

(0.8,−0.6) 250.6 −32.4 2.7 0.1

σ(χ̃+
1 χ̃
−
1 )500

(−0.8,0.6) 1079.2 −194.8 6.0 0.1

σ(χ̃+
1 χ̃
−
1 )500

(0.8,−0.6) 229.6 −8.7 2.7 0.1

A400
FB(%) 0.0 3.0 1.0 0.1

A500
FB(%) 0.0 5.0 1.0 0.1

Table 4: Observables (masses in GeV, cross sections in fb) used as an input
for the fit in S2, as in tab. 4. The central value of the theoretical prediction,
B(b → sγ) = 3.3 · 10−4 GeV, calculated using state-of-the-art tools, is also
included in the fit. See text for details of error estimation.

As we again find that the muon anomalous magnetic moment has a negligible
impact, it is not used in the fit. The input variables, together with errors,
namely the assumed experimental precision of the prospective LC measure-
ments as well as the theoretical uncertainties, are listed in tab. 4. While AFB
is negligible at LO, the NLO corrections to it are again found to be large.

We again fit 8 MSSM parameters: M1, M2, µ, tan β, mν̃ , cos θt, mt̃1 , and
mt̃2 . The impact of other parameters, except the heavy Higgs boson mass,
can be neglected. The results from the fit are given in tab. 5. The higgsino
and bino mass parameters are well constrained in this scenario since bino-like
neutralino and all higgsinos are directly accessible. Even though the winos
are not directly accessible, the wino mass parameter M2 can be constrained
with 10% accuracy at 1σ level. An accuracy of 20% is achieved for tan β,
significantly worse than in S1. This can be understood by the fact that the
mixing in S2 between chargino states is weak due to M2 being heavy, and the
constraint on tan β is dependent on this mixing. No limits can be derived on
the sneutrino mass, due to the Yukawa suppressed coupling of the higgsino-
like χ̃±1 to the electron and sneutrino. We are however, as shown in tab. 5,
still able to derive limits on the stop masses and mixing parameter.
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Parameter Fit result

M1 125+0.9
−0.6 (+2.1

−1.2)

M2 2000±200 (+600
−400)

µ 180±0.2 (+0.5
−0.3)

tan β 10±2 (+5
−4)

mν̃ unconstrained

cos θt 0+0.13
−0.09 (+0.4

−0.3)

mt̃1 400+250
−50 (+500

−80 )

mt̃2 800+300
−200 (+900

−400)

Table 5: Fit results (in GeV with the exception of tan β and cos θt) for S2,
as in tab. 3, where numbers in brackets denote 2σ errors.

4.5 Results for parameters in scenario 3

This final scenario features the richest phenomenology of the studied bench-
mark scenarios. As input for the fit we therefore use:

• the masses of the charginos (χ̃±1 , χ̃±2 ) and neutralinos (χ̃0
1, χ̃

0
2, χ̃

0
3)

• the light chargino production cross section σ(χ̃+
1 χ̃
−
1 ) with polarised

beams at
√
s = 400 and 500 GeV

• the forward-backward asymmetry AFB at
√
s = 400 and 500 GeV

• the Higgs boson mass, mh

• the branching ratio B(b→ sγ)

• the anomalous muon magnetic moment

Compared to the previous scenarios, these observables are supplemented by
the Higgs boson mass, mh, calculated using FeynHiggs 2.9.1 [55–58]. The
estimated experimental precision at the LC for mh, taken from ref. [1], is
adopted. We further assume the future theoretical uncertainty on the Higgs
boson mass to be 1 GeV [58]. As before, the remaining two observables, the
branching ratio B(b → sγ) and the anomalous muon magnetic moment are
calculated using micrOmegas 2.4.1 [61, 62], and a projected experimental
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Observable Tree value Loop corr. Error exp. Error th.

mχ̃±1
139.3 − 0.1 −

mχ̃±2
266.2 − 0.5 −

mχ̃0
1

92.8 − 0.2 −

mχ̃0
2

148.5 2.4 0.5 0.5

mχ̃0
3

189.7 −7.3 0.5 0.5

σ(χ̃+
1 χ̃
−
1 )400

(−0.8,0.6) 709.7 −85.1 4.5 −

σ(χ̃+
1 χ̃
−
1 )400

(0.8,−0.6) 129.8 20.0 2.0 −

σ(χ̃+
1 χ̃
−
1 )500

(−0.8,0.6) 560.0 −70.1 4.5 −

σ(χ̃+
1 χ̃
−
1 )500

(0.8,−0.6) 97.1 16.4 2.0 −

A400
FB(%) 24.7 −2.8 1.4 0.1

A500
FB(%) 39.2 −5.8 1.5 0.1

Table 6: Observables (masses in GeV, cross sections in fb) used as an input for
the fit in S3, as in tab. 4.3. The central values of the theoretical predictions
B(b → sγ) = 2.7 · 10−4, ∆(gµ − 2)/2 = 2.4 · 10−9 and mh = 125 GeV,
calculated using state-of-the-art tools, are also included in the fit. See text
for details of error estimation.

error on the anomalous muon magnetic moment of 3.4·10−10 is employed [67],
which we assume would dominate over the theoretical uncertainty. The input
variables, together with errors, namely the assumed experimental precision
of the prospective LC measurements and the theoretical uncertainties, are
summarised in tab. 6. Because the sneutrino is now directly accessible, we
assume that its mass has been measured and it is therefore not included in
the fit. On the other hand, due to the stronger dependence of the NLO
cross-section and forward-backward asymmetry on MA0 , this is now used as
an additional fit prameter. We neglect the remaining theoretical uncertainty
on the cross-sections, as it is found to be negligible in comparison to the
experimental error.

This means that in scenario 3, we fit to M1, M2, µ, tan β, cos θt, mt̃1 , mt̃2

and MA0 . The results of the fit are collected in tab. 7. The parameters of
the electroweak gaugino-higgsino sector are determined with high precision.
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Parameter Fit result

M1 106±0.3 (±0.5)

M2 212±0.5 (±1.0)

µ 180±0.4 (±0.9)

tan β 12±0.3 (±0.7)

cos θt 0.15+0.08
−0.06 (+0.16

−0.09)

mt̃1 430+200
−130 (+300

−400)

mt̃2 1520+200
−300 (+300

−400)

mA0 < 650 (< 1000)

Table 7: Fit results (in GeV with the exception of tan β and cos θt) for
S3, including results for the masses of the heavier stop mass (mt̃2) and the
pseudoscalar higgs boson (mA0).

Due to a significant mixing in the stop sector, and the improvement in the fit
quality due to the inclusion of the higgs mass, we find that the fit is now also
sensitive to the mass of the heavy stop. The accuracy is better than 20% for
this particle even though it is far beyond the reach of the LC and also most
likely of the LHC. In addition, in this scenario an upper limit on the mass
of the heavy Higgs boson can be placed at 1000 GeV, at the 2σ level. It is
the particular sensitivity of the NLO corrections to MA0 which presents this
unique opportunity to set such an upper bound.

5 Conclusions

The evidence for the Higgs boson and dark matter, when examined in the
context of supersymmetry, suggests the possibility of a light µ and M1. We
have extended previous analyses, which fitted observables for chargino pro-
duction at the LC to extract fundamental MSSM parameters, by incorporat-
ing NLO corrections. The loop corrections are calculated for all observables
fitted, namely the polarised cross-sections and forward backward asymmetry
for chargino production as well as the χ̃±1 , χ̃

±
2 and χ̃0

1, χ̃
0
2, χ̃

0
3 masses, in an

on-shell scheme which facilitates the extension to the complex case. We have
fitted these observables for three complementary scenarios. We found that
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on including NLO corrections, when M1, M2 and µ are light they can be
determined to percent-level accuracy, and tan β to < 5%. Further we showed
that obtaining masses of the charginos and neutralinos from the continuum
as opposed to threshold scans would result in the uncertainty on the funda-
mental parameters almost doubling, reinforcing the importance of threshold
scans for mass measurements. As a heavy M2 is still a viable possibility,
we also considered M2 = 2000 GeV, and found that the sensitivity to M2

is approximately 10%. As the error on tan β is dependent on the degree of
mixing in the chargino sector, here it increases to ∼ 20%. Note that the
inclusion of B(b→ sγ), as well as the use of masses determined via threshold
scanning, in the fit was seen to improve the sensitivity to the stop sector. We
finally considered a scenario compatible with the latest Higgs results. For
this scenario we found that including B(b→ sγ), ∆(gµ− 2)/2 and mh in the
fit, along with the significant mixing in the stop sector, helped to obtain an
accuracy better than 20% on the mass of the heavy stop, even though this
particle is far beyond the reach of the LC and also most likely of the LHC. We
also included mA0 in the fit, and found that, due to the particular sensitivity
of the NLO corrections to MA0 , it would even be possible to place a 2σ up-
per bound on this parameter of 1000 GeV. In summary, we have shown that
incorporating NLO corrections is required for the precise determination of
the fundamental parameters of the chargino and neutralino sector at the LC,
and could further provide sensitivity to the parameters describing particles
which contribute via loop corrections.
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