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Abstract

PATHFINDER is a package which provides a global track finding algorithm
using a Hough transformation. This document provides basic information on
the software package which is needed to run it successfully.
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1 Introduction

PATHFINDER (PAckage for Tracking with a Hough trafo FINDER) is a software pack-
age which provides a global track finding algorithm based on Hough transformation.
It was mainly written to do the track finding for data taken with the Large Prototype
TPC [1]. The algorithm can either be used standalone or in a software framework
such as MarlinTPC [2].
In Section 2 the track parameters used in PATHFINDER will be presented. Section 3
contains an explanation of the Hough transformation and Section 4 gives informa-
tion on the algorithms used in PATHFINDER. Finally, in Section 5, some notes on the
usage of PATHFINDER will be made.
For more details or example code see [3, 9] or the examples coming with PATHFINDER.

2 Track Parameters

If a charged particle travels through a homogeneous magnetic field its trajectory
will have a helicoidal shape. However, for particles with very high momentum the
curvature is expected to be very small. Thus the track will almost be a straight
line. Particles with very low momentum on the other hand will curl (more than one
turn of a helix). All these types of tracks need to be described by the same set of
parameters. The parameters chosen are perigee parameters as described in detail in
[4] and [5] so this topic will be dealt with only briefly here.

Figure 1: LCIO Track Parameters [4].

The coordinate system is chosen
such, that the z-axis points along the
direction of the magnetic field and
the xy-plane is the plane perpendic-
ular to the z-axis. A track projected
into the xy-plane is then, neglecting
energy losses, a circle. In this pro-
jection the track parameters are cho-
sen to be the distance of closest ap-
proach d0, the angle φ0 between the
transverse momentum at the point of
closest approach and a line parallel to
the x-axis crossing the point of clos-
est approach. The third parameter
describing a circle in the xy-plane is
the curvature |Ω| = 1/R where R is
the radius of the circle.
The other two parameters needed to
describe a helix are defined in the sz-
plane. s is the arc length of the track
in the xy-plane. It is zero at the point
of closest approach and counted along
the direction of the momentum of the particle. In this projection a helix is a straight
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line described by the slope tan λ and the offset z0. The parameters are shown in the
sketch in Figure 1.
The parameters described above also work for straight lines since they are helices
with Ω = 0.

3 Hough Transformation

The Hough transformation [6] is a global pattern recognition method. This means
that all hits (points in 3D-space) enter into the algorithm at the same time and
in the same way1. In this method for each hit in the event all possible tracks are
calculated on which the hit can be. If several hits are on the same track, for each of
those hits the same track can be found. An example for a straight line in a 2D-plane

Figure 2: The idea behind the Hough transformation (here for straight lines in 2D space).
Through each hit an infinit number of straight lines can be drawn (only a few are shown
here and only for two hits). One straight line can be found which crosses all hits (left
hand side). The functions calculated by the Hough transformation intersect in one point
in parameter space. This point gives the parameter of the straight line the hits are on
(right hand side).

is shown in Figure 2. The hits on a straight line in the pattern space (shown on the
left hand side in Figure 2) are shown as dots with different colors. Through each
of the hits an infinite number of straight lines can be constructed. A few of such
straight lines are shown for two of the hits. If the straight lines the hits are on is
described by

y(x) = mx + b (1)

1In local methods the pattern recognition is started with a seed track consisting of a few hits,
then more hits are added step by step.
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with slope m and offset b, all straight lines a hit can be on is given by the function

b(m) = y −mx. (2)

These functions are straight lines in the parameter space shown on the right hand
side in Figure 2. If the hits are on a straight line, the functions in parameter space
intersect in one point and the intersection gives the parameters of the straight line
the hits are on.
As was explained in the previous section, the track parameters used here are defined
in the xy-plane and the sz-plane. The parameters in the xy-plane are needed to
calculate the arc length s. To do the search in sz the track in xy must be known.
That is why the search for tracks is split into two parts: the xy-search and the
sz-search. Two different types of patterns need to be found: straight lines (high pT

tracks in the xy-plane and tracks in the sz-plane) and circles (tracks with a pT low
enough to give them a significant curvature in the xy-plane).

Straight Lines The Hough transformation for straight lines in the xy-plane is
done by calculating the parameter d0 for all possible φ0. This information can be
used to define the Hough transformation for the center of the circle:

d0(θ) = cos θ · x + sin θ · y (3)

which has the hit positions in x and y as parameters and where θ = φ0 − π
2
. Such

a function exists for each hit. In case the hits are on a straight line the functions
intersect in the Hough space (parameter space) and the point of intersection gives
the parameters of the straight line the hits are on.
The search for straight lines in the sz-plane works in a similar way, but instead of
x and y, s and z are used.

Circles The Hough transformation for circles is done in a different way. Here
three parameters need to be taken into account. In order to do this in an efficient
way the search is split into two steps. In the first step a search for the center of the
circle is carried out as was proposed in [7]. For this task the information of one hit
is not sufficient. More information can be added by not using single hits but pairs
of hits. Two straight lines are constructed. The first one connects the two hits. The
second one is perpendicular to the first straight line and crosses it half way between
the two hits. If the two hits are both on the same circle the second straight line
crosses the center of the circle. This can be described by a function

1

D(θ)
= 2 · (y1 − y2) sin θ + (x1 − x2) cos θ

(y2
1 − y2

2) + (x2
1 − x2

2)
, (4)

where D is the distance of the center of the circle to the origin and θ = φ0 −
π
2
. The inverse of D was chosen to avoid discontinuities2. The function has four

parameters: the hit positions in x and y for two hits. Such functions are built for

2From version v00-03 on, before that D(θ) = 1
2

(y2
1−y2

2)+(x2
1−x2

2)
(y1−y2) sin θ+(x1−x2) cos θ was used.
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all hit combinations and they intersect in one point if all hits are on the same circle.
A vertex constraint can be introduced easily at this point by using a pair of vertex
and hit instead of using a pair of hits.
Once the center is found the radius is determined by calculating the distances of the
hits to the center of the circle.

4 Implementation of the Algorithm PATHFINDER

In real data the hits will not be exactly on a straight line or helix but shifted off
slightly. So the functions presented in the previous section will not intersect in
exactly one point. However there will be a region where they approach each other.
How one can find tracks in this situation will be explained in this section.
The algorithm is shown graphically in Figure 3. As already indicated the search
is done in several steps. As a first step the search is done in the xy-plane. The
Hough space must be calculated first (for more details see Section 4.1). Once this
is done the point of intersection needs to be found. This gives a rough estimate of
the track parameters. Using these parameters one can determine which hits were on
the track. To improve the result a very simple fit is done with the hits found on the
track. Then it is checked if additional hits can be added to the track. At this point
the search in xy is over. To do the search in the sz-plane s needs to be calculated for
each hit (see Section 4.4). In this step the parameters in the xy-plane are needed.
After having done this the search in sz is performed in an analog way as in the
xy-projection, but when determining which hits were on the track only those hits
are used which were already assigned to the track in the xy-search. Finally tracks
are built, which consist of the hits on the track and the rough estimation of the
track parameters coming from the Hough transformation. To match the parameters
described in Section 2 the track parameters must be converted first.
This procedure is repeated on the remaining hits which were not assigned to any
track (no matter at which step they were rejected) until no more tracks can be
found.
In the following each of these steps will be described in more detail.

4.1 Calculating the Hough Space and Finding the Point of
Intersection

The Hough space is calculated in such a way that in a certain range values for θ
are chosen. How many such values are chosen depends on the number of bins given
as steering parameter. Then for each of those values for θ and for each hit or pair
of hits the value of the function (3) or (4) (depending on what shape needs to be
found) are calculated. The result of this is a continuous spectrum of values. Those
values are then binned according to the steering parameters set (number of bins and
range in that direction). It is counted how often each bin was crossed by one of the
functions. 3

3All hits are weighted with 1, but in principle it is also possible to weight them with the error
of the hit position (not implemented yet).
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assigned and 
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Find Hits on Track

Do Simple Track Fit

Find Hits on Track
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Figure 3: Track Finding Algorithm as implemented in PATHFINDER.

The point of intersection corresponds to the bin which was crossed most often. In
other words one has to find the bin with the maximum number of entries. Since
there might be ambiguities (bins with the same number of entries) for events with
more than one track, an option was implemented to not only look for the bin with
the maximum number of bins but also at the adjacent bins. This improved the
the search in data taken with small prototypes with in the order of 10 hits per
track. If still more than one intersection candidate remains the search algorithm
works as follows: If there is more than one intersection candidate the first candidate
found is used for the further search. After the track was found the Hough space is
recalculated with the remaining hits which were not assigned to a track.

4.2 Finding Hits on the Track

To determine which hits were on the track the shortest distance between hit and
track (in the xy-plane or the sz-plane) is calculated. If the distance is below a
certain value (which can be set as a steering parameter, different values can be set
for finding hits on the track before the fit and after the fit) the hit is assigned to the
track, else it is rejected.
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4.3 Track Fitting

In order to improve the track parameters obtained from the Hough transformation
the found tracks are fitted with simple fitting algorithms in the xy-plane and in
the sz-plane. For straight lines a linear regression is used, for circles the fit is done
with the method described in [8]. The result is an improved estimate of the track
parameters. The errors on the track parameters are calculated as well.

4.4 Calculate s

To calculate s the track parameters in the xy-plane are needed. It can thus only
be done when the search in the xy-plane is complete. s is defined to be zero at
the point of closest approach. This point can easily be calculated from the track
parameters d0 and φ0:

xpca = −d0 · sin(φ0)

ypca = d0 · cos(φ0).

Then for each hit the distance between the point of closest approach and the hit
position in xy along the track can be calculated. For straight lines this equation
reads

s = ±
√

(xhit − xpca)2 + (yhit − ypca)2. (5)

For circles the equation is

s =
1

|Ω|
·
(

arctan

(
ypca − ycenter

xpca − xcenter

)
− arctan

(
yhit − ycenter

xhit − xcenter

))
(6)

with the center of the circle

xcenter =

(
1

Ω
− d0

)
· sin(φ0)

ycenter = −
(

1

Ω
− d0

)
· cos(φ0).

5 Usage of PATHFINDER

5.1 Input and Output

PATHFINDER needs input from the user to find tracks successfully. First of all it
needs hits (points in 3D space) on which the pattern recognition should be done.
Additionally steering parameters need to be provided. They are listed and explained
in section 5.2. More details can be found in [3, 9] and in the examples coming with
PATHFINDER [10].
PATHFINDER gives back a set of found tracks consisting of the track parameters and
the hits on the track.
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5.2 Steering Parameters

isStraightLine, isHelix: These steering parameters define what kind of track
shape should be found. For straight lines isStraightLine needs to be true, for helices
isHelix has to be true.

findCurler: findCurler has to be true if curlers (helices with more than one
turn) should be found. It only has an effect if isHelix = true. If it is set to false a
curler will be found as several tracks, one track for each turn. For tracks with high
energy losses the curler will not be found in one piece even if this parameter is set
to true.

minimumHitNumber: Via this parameter the minimum number of hits on the
track can be specified. If there are less hits on the track, the track is rejected and
the hits on that track are counted as noise hits.

maxXYDistance, maxSZDistance: The maximum allowed distance of the
hits to the track in the xy-plane and the sz-plane before the fit can be set via these
two parameters. They are needed to determine which hits are close enough to the
track to be counted to be on the track.

maxXYDistanceFit, maxSZDistanceFit: Basically these two parameters are
the same as the previous ones but are used after the fit. Since the track parameters
after the fit are a better estimate than the ones before the fit the values for the
maximum allowed distance after the fit can usually be set a bit lower than those
used before the fit.

numberXYDzeroBins, numberXYThetaBins, numberXYOmegaBins,
numberSZDzeroBins, numberSZThetaBins: These steering parameters set

the binning of the Hough spaces. θ here means the angle between the direction to
the point of closest approach and the x-axis. In the xy-plane this means φ = θ−π/4.
The parameters θ and d0 are also used for the straight lines in the sz-plane instead
of tan λ and z0. The slope and the offset can in principle have infinitely large values
which would lead to problems.
numberXYOmegaBins only has an effect if isHelix = true. The number of bins
cannot be larger than 1000. How the values are chosen best depends on the data.
If the bins are to wide, the track parameters do not come out correctly. In this
case no hits can be assigned to the track. If the binning is too small the point of
intersection might not be defined well enough to be found correctly. Also, the more
bins are chosen, the longer the computation will take.

maxDxy, maxDsz: These are the maximum ranges of the Hough spaces and
depend on the layout of the readout plane and the setup. The range is chosen
symmetrically around the zero. At this point the user needs to think about how the
data and the setup the data were taken with look like. For straight lines maxDxy is
the maximum distance of closest approach possible so that the track was still visible
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on the readout plane. For circles it is the maximum possible distance of the center
of the circle in the xy-plane so that the track could still be seen on the pad plane
with a significant curvature 4 or the inverse of this 5.
maxDsz is the maximum possible distance of closest approach in the sz-plane.

useVertex, VertexPosition: The default of useVertex is false. VertexPosition
is a pair giving the vertex position in the xy plane. If it is set, useVertex is set to
true and the vertex constraint is used. If VertexPosition is not set, the vertex con-
straint is not used. The vertex information is added by not using all combinations
of hits (compare section 3) but combining every hit with the vertex. This speeds up
the computation but only tracks coming from the origin can be found. It only has
an effect if isHelix = true.

searchNeighborhood: An option to improve the search for the point of inter-
section of the functions in the Hough space. This might be helpful if there are very
few hits in the event (10 or less). In case there was more than one point of intersec-
tion found 6, not only the point of intersection is used to determine if there was a
track found, but also the surrounding area around the point of intersection is taken
into account.

saveRootFile: This is an option to save the Hough Spaces in a ROOT Tree [11]
(for debugging only).

5.3 Further Notes on the Usage

It does not matter in which units the hit positions, the maximum allowed distances
and the Hough space ranges are given, but they all need to have the same unit.
Furthermore the hit positions have to be given in Cartesian coordinates.
If all hits are located rather far away from the origin the track finding might not
work very well. In this case a shift of the hits towards the origin can be helpful.
The track parameters found for the shifted hits do have a different point of reference
than if the search would have been done without the shift. Therefore, after the track
finding the point of reference of the track parameters has to be shifted. See e.g. [5].
PATHFINDER cannot find tracks parallel to the z-axis because such tracks look like
points in the xy-plane. Also, PATHFINDER cannot find tracks parallel to pad rows
since in this case only one single hit would have been reconstructed in that row.
No hit cleaning is done in PATHFINDER. This means, in case for a pad readout, it is
in principle possible that two hits in the same row are assigned to the same track.
The track parameters are, due to the binning of the Hough space, only a rough
estimate. A proper fit should be done after the track finding.

4PATHFINDER versions v00-01-00, v00-01-01 and v00-02
5From PATHFINDER version v00-03 on
6Due to binning effects this can happen even if there is only one track in the event.

9



5.4 PathfinderInterfaceProcessor

A processor using PATHFINDER is available in MarlinTPC [2]. It contains an option
to shift the hits towards the origin before doing the track finding (see section 5.3).
After the track finding the track parameters are shifted back so that they match the
original hit positions. It is also possible to chose a point of reference different from
the default one (which is 0,0,0).

6 Performance of PATHFINDER

In this section a short summary of the performance of PATHFINDER is given. For
more details see [3].

6.1 Track Finding Efficiency

PATHFINDER has a good track finding efficiency for events with low track multiplici-
ties and reaches the same efficiency as a local track finding algorithm [12]. In Figure
4 the track finding efficiencies for the two algorithms are shown. A simulation of
single muons in the ILD [13] was used. A track was defined to be found correctly if
at least 75 % of all hits are assigned to the reconstructed track correctly. The effi-
ciency is the number of correctly found tracks over the number of simulated tracks.

Figure 4: Track finding efficiency for PATHFINDER and a local track finding algorithm
(Clupatra [12]). A simulation of single muons with different transverse momenta in the
ILD [13] was used.
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6.2 Computing Time

The Hough transformation is a global method and thus slower than algorithms
following local track finding approaches. The part taking longest is the calculation
of the Hough space. A good estimate for the time needed is how often an entry is
filled into the Hough space, in other words how often the access operator is called.
In case for straight lines and helices with vertex constraint the number of calls of the
access operator can be described by a polynomial of order O(2), in case for a helix
without using a vertex constraint it is a polynomial of order O(3). For example (on
an average computer): Finding one track with 222 hits in one event takes about 2.5
seconds, 50 tracks in one event would take about 18 minutes.
To conclude, single track events (as expected in testbeam data) can be reconstructed
using PATHFINDER. Reconstructing full physics events is not possible in a reasonable
amount of time with the current version of PATHFINDER.
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